• 제목/요약/키워드: Cropping Systems

검색결과 278건 처리시간 0.032초

Blind Color Image Watermarking Based on DWT and LU Decomposition

  • Wang, Dongyan;Yang, Fanfan;Zhang, Heng
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.765-778
    • /
    • 2016
  • In watermarking schemes, the discrete wavelet transform (DWT) is broadly used because its frequency component separation is very useful. Moreover, LU decomposition has little influence on the visual quality of the watermark. Hence, in this paper, a novel blind watermark algorithm is presented based on LU transform and DWT for the copyright protection of digital images. In this algorithm, the color host image is first performed with DWT. Then, the horizontal and vertical diagonal high frequency components are extracted from the wavelet domain, and the sub-images are divided into $4{\times}4$ non-overlapping image blocks. Next, each sub-block is performed with LU decomposition. Finally, the color image watermark is transformed by Arnold permutation, and then it is inserted into the upper triangular matrix. The experimental results imply that this algorithm has good features of invisibility and it is robust against different attacks to a certain degree, such as contrast adjustment, JPEG compression, salt and pepper noise, cropping, and Gaussian noise.

Rhizobacterial Populations of Glyphosate-Resistant Soybean (Glycine Max) as Affected by Glyphosate and Foliar Amendment

  • Kim, Su-Jung
    • 한국환경농학회지
    • /
    • 제25권3호
    • /
    • pp.262-267
    • /
    • 2006
  • Increased application of glyphosate (Gly) in glyphosate-resistant (GR) soybean cropping systems may affect rhizospheric microorganisms including IAA-producing rhizobacteria (IPR) and their effect on the growth of soybean. This field experiment was conducted to assess IPR populations in the rhizosphere of GR soybean ('Roundup-Ready' DeKalb DKB38-52) treated with glyphosate and foliar amendment treatments such as $PT21^{(R)}$ (urea solution with N 21 %) and $Grozyme^{(R)}$ (Biostimulant: mixtures of micro nutrients and enzymes). Effects of herbicide, sampling date, and their interaction on total bacterial numbers were significant (P < 0.001, 0.001, 0.013, respectively). Total bacteria (TB) numbers were increased with glyphosate treatment at 20 d after application and highest TB populations were associated with $Grozyme^{(R)}$ application, possibly due to the additional substrate from this product. The IPR of the soybean rhizosphere was significantly affected by herbicide, sampling date, and the herbicide*foliar amendment interaction. The ratios of numbers of IPR to TB ranged from 0.79 to 0.99 across the sampling dates irrespective of treatments. IPR numbers were slightly hindered by glyphosate application regardless of foliar amendment.

Comparing LAI Estimates of Corn and Soybean from Vegetation Indices of Multi-resolution Satellite Images

  • Kim, Sun-Hwa;Hong, Suk Young;Sudduth, Kenneth A.;Kim, Yihyun;Lee, Kyungdo
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.597-609
    • /
    • 2012
  • Leaf area index (LAI) is important in explaining the ability of the crop to intercept solar energy for biomass production and in understanding the impact of crop management practices. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of IKONOS, Landsat TM, and MODIS satellite images using empirical models and demonstrates its use with data collected at Missouri field sites. LAI data were obtained several times during the 2002 growing season at monitoring sites established in two central Missouri experimental fields, one planted to soybean (Glycine max L.) and the other planted to corn (Zea mays L.). Satellite images at varying spatial and spectral resolutions were acquired and the data were extracted to calculate normalized difference vegetation index (NDVI) after geometric and atmospheric correction. Linear, exponential, and expolinear models were developed to relate temporal NDVI to measured LAI data. Models using IKONOS NDVI estimated LAI of both soybean and corn better than those using Landsat TM or MODIS NDVI. Expolinear models provided more accurate results than linear or exponential models.

Block Based Blind & Secure Gray Image Watermarking Technique Based on Discrete Wavelet Transform and Singular Value Decomposition

  • Imran, Muhammad;Harvey, Bruce A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.883-900
    • /
    • 2017
  • In this paper block based blind secure gray image watermarking scheme based on discrete wavelet transform and singular value decomposition is proposed. In devising the proposed scheme, security is given high importance along with other two requirements: robustness and imperceptibility. The use of discrete wavelet transform not only improves robustness but the selection of bands with high tolerance towards noise caused an improvement in terms of imperceptibility. The robustness further improved due to the involvement of singular vectors along with singular values in watermark embedding and extraction process. Finally, to achieve security, the selected DWT band is decomposed into smaller blocks and random blocks are chosen for modification. Furthermore, the elements of left and right singular vectors of selected blocks are chosen based on their dependence upon each other for watermark embedding. Various experiments using different images as host and watermark were conducted to examine and validate the proposed technique. Additionally, the proposed technique is tested against various attacks like compression, affine transformation, cropping, translation, X shearing, scaling, Y shearing, filtering, blurring, different kinds of noises, histogram equalization, rotation, etc. Lastly, the proposed technique is compared with state-of-the-art watermarking techniques and their comparison shows significant improvement of proposed scheme over existing techniques.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

교차참조점에 기반한 정지영상의 워터마크 생성 및 유사성 삽입 기법 (A Technique of Watermark Generation and Similarity Embedding for Still Images Based on Cross Reference Points)

  • 이항찬
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1484-1490
    • /
    • 2007
  • The Cross Reference Point(CRP) is a robust method for finding salient points in watermarking systems because it is based on the geometrical structure of a normalized image in order to avoid pointing error caused by digital attacks. After normalization of an image, the 100 CRPs are calculated. Next, the 100 blocks centered by CRPS are formed. These 100 blocks are arranged using a secrete key. Each boundary of 50 out of 100 blocks is surrounded by 8 blocks which are selected by the ordered number of a preceding block. This number is a seed of random number generator for selecting 8 out of 50 blocks. The search area of a center block is formed by a secrete key. The pixels of a center block are quantized to 10 levels by predefined thresholds. The watermarks are generated by the 50 quantized center blocks. These watermarks are embedded directly in the remaining 50 blocks. In other words, 50 out of 100 blocks are utilized to generate watermarks and the remaining 50 blocks are used to watermark embedding. Because the watermarks are generated in the given images, we can successfully detect watermarks after several digital attacks. The reason is that the blocks for the generation and detection of watermarks are equally affected by digital attacks except for the case of local distortion such as cropping.

Trend analysis of aridity index for southeast of Korea

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.193-193
    • /
    • 2017
  • Trend analysis can enhance our knowledge of the dominant processes in the area and contribute to the analysis of future climate projections. The results of previous studies in South Korea showed that southeast regions of Korea had the highest value of evapotranspiration. Thereby, it is of interest to determine the trend analysis in hydrological variables in this area. In this study, the recent 35 year trends of precipitation, reference evapotranspiration, and aridity index in monthly and annual time scale will be analyzed over three stations (Pohang, Daegu, and Pusan) of southeast Korea. After removing the significant Lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann-Kendall test was used to detect the trends. Also, the slope of trend of the Mann-Kendall test was determined by using Theil-Sen's estimator. The results of the trend analysis of reference evapotranspiration on the annual scale showed the increasing trend for the three mentioned stations, with significant increasing trend for Pusan station. The results obtained from this research can guide development if water management practices and cropping systems in the area that rely on this weather stations. The approaches use and the models fitted in this study can serve as a demonstration of how a time series trend can be analyzed.

  • PDF

Price Forecasting on a Large Scale Data Set using Time Series and Neural Network Models

  • Preetha, KG;Remesh Babu, KR;Sangeetha, U;Thomas, Rinta Susan;Saigopika, Saigopika;Walter, Shalon;Thomas, Swapna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3923-3942
    • /
    • 2022
  • Environment, price, regulation, and other factors influence the price of agricultural products, which is a social signal of product supply and demand. The price of many agricultural products fluctuates greatly due to the asymmetry between production and marketing details. Horticultural goods are particularly price sensitive because they cannot be stored for long periods of time. It is very important and helpful to forecast the price of horticultural products which is crucial in designing a cropping plan. The proposed method guides the farmers in agricultural product production and harvesting plans. Farmers can benefit from long-term forecasting since it helps them plan their planting and harvesting schedules. Customers can also profit from daily average price estimates for the short term. This paper study the time series models such as ARIMA, SARIMA, and neural network models such as BPN, LSTM and are used for wheat cost prediction in India. A large scale available data set is collected and tested. The results shows that since ARIMA and SARIMA models are well suited for small-scale, continuous, and periodic data, the BPN and LSTM provide more accurate and faster results for predicting well weekly and monthly trends of price fluctuation.

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.

The Variation of Yield-Related Traits of the QTL Pyramiding Lines for Climate-resilience and Nutrition Uptake in Rice

  • Joong Hyoun Chin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.14-14
    • /
    • 2022
  • Greenhouse gas emissions are one of the critical factors that drive change in rice cropping systems. Within this changing system, less water irrigation and chemical fertilizer are seriously considered, as well combining precision farming technologies with irrigation control. Water and phosphorus (P) fertilizer are two of the most critical inputs in rice cultivation. Due to the lack of water availability in the system, P fertilizer is not available, especially in acidic soil conditions. Moreover, the various types of abiotic stresses, such as drought, high temperature, salinity, submergence, and limited fertilizer result in significant yield loss in the system. Even in the late stage of growth, the waves caused by diseases and insects make the field more unfruitful. Therefore, agronomists and breeders need to identify the secondary phenotypes to estimate the yield loss of when stress appears. The prediction will be clearer if we have a set of markers tagging the causal variation and the associated precise phenotype indices. Although there have been various studies for abiotic stress tolerance, we still lack functional molecular markers and phenotype indices. This is due to the underlying challenges caused by environmental factors in highly unpredictable regional and yearly environmental conditions in the field system. Pupl (phosphorus uptake 1) is still known as the first QTL associated with phosphorus uptake and have been validated in different field crops. Interestingly, some pyramiding lines of Pupl and other QTLs for other stress tolerances showed preferable phenotypes in the yield. Precise physiological studies with the help of genomics are on-going and some results will be discussed.

  • PDF