Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.403-413
/
2022
Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.
Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.
Classification of blast resistance type of 129 Korean rice cultivars was carried out based on reaction pattern to 10 Japanese blast pathogen isolates(Pyricularia oryzae). The cultivars were divided into 11 groups based on the presumed resistance genes as follows; Pia type(19 cultivars), Pita-2 type(4), Pik type(3), Pib type(5), Piz type(11), Pik-s type(8), Pik and Pii type(4), Pia and Pita type(8), Pia and Pik type(6), Pita, Pik and Pii type(4) and no-grouping type(57). These results would provide important information to rice breeding for durable and broad resistance to rice blast.
In this study, we aim to use big data resources and statistical analysis to obtain a reliable instruction to reach high-quality and high yield agricultural yields. In this regard, soil type data, raining and temperature data as well as wheat production in each year are collected for a specific region. Using statistical methodology, the acquired data was cleaned to remove incomplete and defective data. Afterwards, using several classification methods in machine learning we tried to distinguish between different factors and their influence on the final crop yields. Comparing the proposed models' prediction using statistical quantities correlation factor and mean squared error between predicted values of the crop yield and actual values the efficacy of machine learning methods is discussed. The results of the analysis show high accuracy of machine learning methods in the prediction of the crop yields. Moreover, it is indicated that the random forest (RF) classification approach provides best results among other classification methods utilized in this study.
The production and productivity of $C_3 and C_4$ type plants in Korea was studcied In the areas, in which the summer temperature is above $30^{\circ}C,;C_3$ type plants showed“M” type productivity curves exhibiting two peaks in spring and autumn, and C4 type plants showd “Bell” type productivity curves which show one peak in summer(Figs. 1,2,3,4,5). From the result of researching the standing crop of $C_3 and C_4$type plants dcuring August and September in which the standing crop reaches the highest peak, the dominant plants in the natural grass vegetation were almost all of $C_4$ type plants, showing the high standing crop, while the standing crop of $C_3$ type plants shows its high peak in the humid areas, riversides and dams.
Silica bodies (phytoliths) are becoming of wide use for pedology, archaeology, paleobotany and paleoecology in botany. This study investigated morphological differences of silica bodies in the lamina of wild, indica type, and japonica type rice. Phytoliths in the epidermis of lamina showed noticeable difference among tested plants. Besides, there were also significant differences in the shape and distribution of the silica bodies around stomata and trichomes. Silica bodies in the lamina of the rice plants could be used to classify subspecies of Oryza genus.
종전에는 Brassica napus에서 성분이 개량되지 않은 유채의 일반 품종들의 Winter type만을 대상으로 춘파성 정도를 분류하고 추태로서 분류기준을 삼았으나 본 시험에서는 같은 B. napus인 Summer type까지를 포함하고 성분이 개량된 양질유ㆍ양박 품종을 공시하여 임실여부로서 분류기준을 삼는 새로운 분류를 시도하여 춘파성 정도를 조사하였던 바 그 결과를 요약하면 다음과 같다. 1. 현재 목포지장에서 보유하고 있는 양질유ㆍ양박 유채(Brassica napus) 품종 및 육성계통들은 8단계 group으로 춘파성 정도를 분류할 수 있었고 춘파성 정도 제Ⅶ group는 Summer type의 계통들이 이에 속하였으며 이들 계통은 Oro, Midas 등의 Summer type의 품종과 교배하여 선발된 계통들이었다. 2. 춘파 파종기에 따른 성숙기변화는 춘파시기가 늦을수록 성숙기는 지연되는 경향이었고 춘파성 정도가 높음에 따라 생육일수와 적산온도가 줄어드는 경향이었다. 3. 춘파성 정도와 내한성 관계는 춘파성 정도가 높을수록 내한성이 낮았으며 춘파성 정도와 초성간에는 춘파성이 높을수록 초성에서 I형에 가깝고 주경의 신장이 분지보다 빈약한 바 이들 모든 상호관계는 고도의 부상관으로 나타났다. 4. 월동에 안전한 추파재배용계통은 춘파성 정도가 낮은 0, I, II group로서 공시품종중 59 품종이 이에 속하였다.
농작물 작황 추정은 생산량 예측을 통한 수급 조절, 가격 예측, 농가 소득 보전을 위한 정책 수립 등에 중요한 판단자료로 활용된다. 급변하는 국내외 여건에서 작물의 안정생산과 식량안보, 생태계 지속성 평가를 위해 원격탐사 등 국가차원의 미래기술 개발 노력이 요구되고 있다. 농촌진흥청은 2010년부터 국내외 주요 곡물생산지대 작황 평가를 위한 원격탐사, 작물모형, 농업기상 분야 원천기술 개발을 위해 노력해왔다. 본 특별호는 농촌진흥청에서 지난 8년간 국내외 작황 평가를 위해 수행해 온 원격탐사, 작물모형, 농업기상 분야의 연구개발 성과 및 연계된 이들 분야 간 융복합 연구 수행 현황을 정리하고 향후 연구 방향을 제시하고자 발간하게 되었다.
본 시험은 고구마 육종에 필요한 기초 자료를 제공하고자 1993년과 1994년에 작물시험장에서 보유하고 있는 유전자원 100품종에 대하여 전기영동법으로 esterase 동위효소와 단백질 특성을 분류하였던 바 결과는 다음과 같다. 1. 잎의 esterase 동위락소 특성은 14가지 형으로 분류되었고 Ⅸ형에 가장 많은 46품종이 속하여 있으며, 다음은 Ⅶ, I, III, Ⅷ, II 및 V형의 순으로 47품종이 속하여 있고 나머지 7품종은 각기 다른 특성을 가지고 있었다. 효소의 수가 많은 I형에는 신율미, Beniastma 및 High Starch 등 육질이 분질인 품종이 분포 되었다. 2. 괴근의 esterase 동위리소 특성은 18가지 형으로 분류되 었고 C형은 가장 많은 22품종을 포함하고 있으며 그 다음은 B, K, A, E, 1 및 N 형 순이었다. 3. 괴근의 단백질 특성은 7가지 형으로분류되었고 I형은 36품종, IV형 27품종을 포함하였으며 다음은 II, III, Ⅶ 및 Ⅵ형 순이었다. 4. 잎과 괴근의 major esterase 동위효소와 major 단백질 분석 결과 Beniastma, Beniaka, Beniazuma 및 Benikomachi, Shiroshistma와 Shiroshastma는 유사한 품종이었고 기타는 다른 품종임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.