• Title/Summary/Keyword: Crop system

Search Result 1,848, Processing Time 0.036 seconds

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Development of a Real-time Grouping System of Rice Crop Canopy Chlorophyll Contents

  • Sung J.H.;Jung I.G.;Lee C.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • This study was carried out to develop a real-time grouping system of chlorophyll contents of rice crop canopy for precision agriculture. The system measured reflected light energy of a rice canopy on a paddy field from visual to near-infrared range and analyzed the collected information of chlorophyll contents of rice crop canopy with given position data. The four filters, 560 nm $({\pm}10nm)$, 650 nm $({\pm}25nm)$, 700 nm $({\pm}12nm)$, and 850 nm $({\pm}40nm)$, were used for a multiple regression to estimate the chlorophyll contents of rice crop canopy. Every $0.2m^2$ area of the open field was inspected at a distance of 1 m above the rice canopy. According to the results of verification test, the chlorophyll content grouping by a commerical chlorophyll meter (SPAD) and by the developed system showed 58.7% match for five-stage chlorophyll contents of rice crop canopy grouping and 93.5% for the $five{\pm}1-stage$ grouping. In addition, the results showed 63.0% match for three-stage grouping and 100.0% for the $three{\pm}1-stage$ grouping.

  • PDF

Characteristics of Soybean Growth and Yield Using Precise Water Management System in Jeollanam-do

  • JinSil Choi;Dong-Kwan Kim;Shin-Young Park;Juhyun Im;Eunbyul Go;Hyunjeong Shim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.79-79
    • /
    • 2023
  • With the development of digital technology, the size of the smart agriculture market at home and abroad is rapidly expanding. It is necessary to establish a foundation for sustainable precision agriculture in order to respond to the aging of rural areas and labor shortages. This study was conducted to establish an automated digital agricultural test bed for soybean production management using data suitable for agricultural environmental conditions in Korea and to demonstrate the field of leading complexes. In order to manage water smartly, we installed a subsurface drip irrigation system in the upland field and an underground water level control system in the paddy field. Based on data collected from sensors, water management was controlled by utilizing an integrated control system. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. The main growth characteristics and yield, such as stem length, number of branches, and number of nodes of the main stem, were investigated during the main growth period. During the operation of the test bed, drought appeared during the early vegetative growth period and maturity period, but in the open field smart agriculture test bed, water was automatically supplied, reducing labor by 53% and increasing yield by 2%. A test bed was installed for each field digital farming element technology, and it is planned to verify it once more this year. In the future, we plan to expand the field digital farming technology developed for leading farmers to the field.

  • PDF

Quantitative Determination of Sesaminol Glucosides in Sesame Seed

  • Ryu, Su-Noh;Kim, Kwan-Su;Bang, Jin-Ki;Lee, Bong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.209-213
    • /
    • 1998
  • The sesaminol glucosides in 80% EtOH extract from sesame seeds were separated by high performance liquid chromatography (HPLC). A HPLC system using a Develosil ODS-5 column and gradient elution system from 30% to 80% methanol was selected for separation and quantitative determination of sesaminol triglucoside, sesaminol diglucoside, and sesaminol monoglucoside. Quantitative analyses for these sesaminol glucosides, sesaminol triglucoside, sesaminol diglucoside, and sesaminol monoglucoside were determined on the basis of standard curve of sesaminol glucosides. Sesaminol triglucoside, sesaminol diglucoside and sesaminol monoglucoside contents of the seed of one Korean sesame cultivar, Danbaekggae, were 56.4 mg/100g, 9.6 mg/100g, and 7.5 mg/100g, respectively. The most abundant aglycon of lignan glucosides in sesame seed was sesaminol triglucoside

  • PDF

Crop Growth Measurements by Image Processing in Greenhouse - for Lettuce Growth - (화상처리를 이용한 온실에서의 식물성장도 측정 -상추 성장을 중심으로-)

  • 김기영;류관희
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.285-290
    • /
    • 1998
  • Growth information of crops is essential for efficient control of greenhouse environment. However, a few non-invasive and continuous monitoring methods of crop growth has been developed. A computer vision system with a CCD camera and a frame grabber was developed to conduct non-destructive and intact plant growth analyses. The developed system was evaluated by conducting the growth analysis of lettuce. A linear model that explains the relationship between the relative crop coverage by the crop canopy and dry weight of a lettuce was presented. It was shown that this measurement method could estimate the dry weight from the relative crop coverage by the crop canopy. The result also showed that there was a high correlation between the projected top leaf area and the dry weight of the lettuce.

  • PDF

Pest Surveillance by Using Internet (Internet을 활용한 병해충 발생예찰)

  • Song Yoo Han
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.415-445
    • /
    • 1998
  • For effective prevention of the spreading and outbreak of crop insects and disease pests, an intensive Pest surveillance system was established to predict their density changes, and distribution. After their initial establishment by either immigration or overwintering, it is necessary to anticipate how they spread out geographically and predict where/when outbreaks are possible. The two major tools, boundary layer atmospheric model (Blayer) and the geographic information system(GIS), have been being developed to facilitate the prediction of pest occurrence in recent days. We are also developing the PeMos (Pest Monitoring System) that is able to manage the pest surveillance data collected from 152 pest monitoring stations in Korea. These three system related to the pest surveillance should be integrated into an internet based comprehensive database management system to facilitate information resources systematically organized and closely linked. Considering various data types and large data size in each system, a new special information management system is suggested. The integrated system should express complex types of information, such as text, multimedia, and other scientific data under the Internet environment. This paper discussed the major three systems, GIS, Blayer, and PeMos, relevant to the crop pest surveillance, then how they can be integrated in a comprehensive system under the Internet environment.

  • PDF

Effect of Subsurface Drainage Systems on Soil Salinity at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Su;Lee, Soo-Hwan;Oh, Yang-Yeol;Ryu, Jin-Hee;Ko, Jong-Cheol;Hong, Ha-Chul;Kim, Yong-Doo;Kim, Sun-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.618-627
    • /
    • 2015
  • Soil salinity is the most critical factor for crop production at reclaimed tidal saline soil. Subsurface drainage system is recognized as a powerful tool for the process of desalinization in saline soil. The objective of this study was to investigate the effects of subsurface drainage systems on soil salinity and corn development at Saemangeum reclaimed tidal saline soil. The field experiments were carried out between 2012 and 2014 at Saemangeum reclaimed tidal land, Buan, Korea. Subsurface drainage was installed with four treatments: 1) drain spacing of 5 m, 2) drain spacing 10 m, 3) double layer with drain spacing 5 m and 10 m, and 4) the control without any treatment. The levels of water table showed shorter periods above 60 cm levels with the deeper installation of subsurface drainage system. Water soluble cations were significantly greater than exchangeable forms and soluble Na contents, especially in surface layer, were greatly reduced with the installation of subsurface drainage system. Subsurface drainage system improved biomass yield of corn and withering rate. Thus, the biomass yield of corn was improved and the shoot growth was more affected by salinity than was the root growth. The efficiency of double layer was not significant compared with the drain spacing of 5 m. The economic return to growers at reclaimed tidal saline soil was the greatest by the subsurface drainage system with 5 m drain spacing. Our results demonstrated that the installation of subsurface drainage system with drain space of 5 m spacing would be a best management practice to control soil salinity and corn development at Saemangeum reclaimed tidal saline soil.