• Title/Summary/Keyword: Crop productivity

Search Result 811, Processing Time 0.029 seconds

Development of Stress-tolerant Crop Plants

  • Choi, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

The Effects of Burning on Composition and Productivity of Grasslands (초지의 구조 및 생산성에 미치는 산불의 영향)

  • 강상준
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 1971
  • The effects of irregular burning of vegetation by man were studied in relation to composition and productivity in a non-agricultural montane grassland in the Chongsun area, Kangwon-Do, Korea. The floristic composition in all study area includes 38 species. Three of the stations are dominated by Arundinella hirta and one is dominated by Miscanthus sinensis. The standing crop of the first station, which was fired in early spring, 1970, was 358.7g/$m^2$ to 497.5g/$m^2$; that of the second station, fired in late 1969 was 351. 5g/$m^2$; the third station, fired sometime in 1968, had a standing crop of 314.5g/$m^2$ to 397.1/$m^2$; the fourth station, having had no recent fires, had a standing crop of 370.0g/$m^2$ to 448.0g/$m^2$. The daily productivity shows a maximum of 6.03g/$m^2$ in the first station, and a minimum of 0.85g/$m^2$ in the fourth station. The productivity of grassland in the study area is at a maximum during July and August because of much precipitation, and decreases rapidly in the months to follow. The productive structure of the first and fourth stations is shown in Fig. 2 and 3. At the first station the maximum height attained by the plants was 180cm. In the height range of 50cm to 100cm there was a maximum of assimilative organs (5.6g/0.25$m^2$$\times$10cm), while in the height range below 50cm there was a maximum of non-assimilative organs (13.0g/0.25$m^2$$\times$10cm). At the fourth station, which has not been fired recently, the maximum height reached by the plants was commonly below 100cm. The assimilative organs showed a maximum abundance in the height range of 40cm to 50cm (4.5g/0.25$m^2$$\times$10cm). while the non-assimilative organs showed their greated abundance in the height range below 10cm (6.0g/0.25$m^2$$\times$10cm). There was a direct relationship between daily productivity and organic matter, available phosphorous, exchangeable calcium and potassium. It appears that the nutrients provided by the ash created in the firing of the study can be an important factor in the productivity of these grasslands.

  • PDF

Composition and productivity of Chulwon grasslands (철원지구 초지의 구조와 생산성에 관한 연구)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.11 no.4
    • /
    • pp.30-36
    • /
    • 1968
  • The vascular flora of grasslands in Mt. Kumhak, Moonheri, Sungilkyo and Kosukjong area located at Chulwon were composed of 54, 57, 45, and 39 species, the most impotant of which were Arundinella hirta and Miscanthus purpurascens. These two species contributed greatly to the standing crop of live material was in excess of 142g/$m^2$ throughout the growing season. The peak standing crop of 332.4g/$m^2$ was reached in July under flooded conditions largely as a result of the growth of Miscanthus Purpurascens and Arundinella hirta. The net production of organic matter occurred largely throughout the growing season. The net productivity of the vascular component of community was in excess of 27.3g/$m^2$ for one growing season.

  • PDF

Effects of Mixed Sowing with Legumes and Applying Cattle Manure on Productivity, Feed Values and Stock Carrying Capacity of Whole Crop Wheat in Gyeongbuk Regions (경북지역에서 콩과작물의 혼파와 우분 시용이 총체밀의 생산성, 사료가치 및 단위면적당 가축 사육능력에 미치는 영향)

  • Hwangbo, Soon;Jo, Ik Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • This study was conducted to estimate the Hanwoo carrying capacity when whole crop wheat, as a winter forage crop, was grown on mixed-sowing of legume forage and by applying cattle manure on the productivity and feed value of whole crop wheat during the period of 2012~2013. The experiment was conducted in a split plot design with three replications. The main plots consisted of three different culture methods such as whole crop wheat and mixed sowing combination with hairy vetch or forage pea. The subplots consisted of four different applications of cattle manure (0, 50, 100 and 150 kg N/ha). The annual amount of dry matter (DM) of whole crop wheat in Gyeongju were higher than those of in Gyeongsan and Yeongju, and the mixed-sowing of hairy vetch mixture was the highest (p<0.05) compared with the single-sowing of whole crop wheat and mixed-sowing of legume in Gyeongju. The DM amounts were increased proportionately corresponded to the applying level of cattle manure, and was found to be significantly (p<0.05) high at the level of 100 and 150 kg/ha groups. With the feed value of forage, the crude protein (CP) contents tended to be higher in the mixed-sowing of legume than the single-sowing of whole crop wheat at the wintering experimental sites of legume. For whole crop wheat, total digestible nutrients (TDN) content was the highest in the mixed sowing plots of forage pea in Gyeongsan; however, there was no significant differences among the single-sowing of whole crop wheat. The carrying capacity of Hanwoo (head/ha) was higher (p<0.05) in Gyeongju (3.83 head) than that in Gyeongsan (3.11) and Yeongju (1.35). Further, the carrying capacity in the single-sowing of whole crop wheat was lower than that in the mixed-sowing of legume, and the hairy vetch was the highest among the mixed-sowing groups (p<0.05). Overall, the present results recommend taking into account the wintering for the mix-sowing of legume in Gyeongbuk province. The cattle manure may be applied for legume in the wintering unavailable regions. In addition, applying cattle manure at the level of 100~150 kg/ha and the mix-sowing of legume may increase the productivity per unit area and feed value, including the CP, for improving the carrying capacity of Hanwoo.

Salt Tolerance in Plants - Transgenic Approaches

  • Sangam S.;Jayasree D.;Reddy K.Janardhan;Chari P.V.B.;Sreenivasulu N.;Kishor P.B.Kavi
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Salinity is one of the major limiting factors for agricultural productivity. In plants, accumulation of osmolytes plays a pivotal role in abiotic stress tolerance. Likewise, exclusion or compartmentation of $Na^+$ ions into vacuoles provides an efficient mechanism to avert deleterious effects of $Na^+$ in the cytosol. Both vacuolar and plasma membrane sodium transporters and $H^+-ATPases$ can provide the necessary ion homeostasis. A variety of crop plants were engineered with respect to the synthesis of osmoprotectants and ion-compartmentation, but there are other cellular pathways involved in the salinity responses that are still not completely explored. Genomics approaches are increasingly used to identify genes and pathway changes involved in salt-tolerance. The new knowledge may be used via guided genetic engineering of multiple genes to create crop plants with significantly increased productivity in saline soils. This review surveys how plants deal with high salt conditions and how salt tolerance can be improved by transgenic approaches.

Agronomic Characteristics of Introduced Triticales

  • Cho, Chang-Hwan;Yun, Seung-Gil;Kazuo, Ataku;Taiki, Yoshihira
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.6-10
    • /
    • 1998
  • This study was conducted to obtain basic information on the development of new triticale cultivars with good quality and high productivity for soiling feed. Twelve cultivars introduced from Poland, Canada and two cultivars developed in Korea were planted in the experimental field at Ansong National University in 1995. Major growth traits and nutrient components for feed were measured and analyzed using principal component analysis and average linkage cluster analysis. 'Prego', 'Prag 46/3', and 'Clercal' were relatively high in forage yield. Most of forage nutrient contents except cellulose were higher in Prego, Clercal, and 'Cumulus' than other cultivars. Results of principal component analysis on 11 traits including forage yield and nutrient contents showed that 72.59% of total variation were explained by the first and second principal components. The Z$_1$ had high correlation with the contents of forage nutrient components and Z$_2$ with plant height, fresh, and dry weight. Fourteen cultivars were classified into 7 groups by multivariate analysis. Clercal and Prego in Group I could be useful source for the improvement of triticale as an important forage crop because they exhibited high productivity as well as high contents of nutrient components for feed.

  • PDF

A Study on Vascular Hydrophytes of Intertidal Area in Nakdong Estuary -Productivity of Intertidal Vascular hydrophytes before and after the Construction of Nakdong Barrage- (洛東江하구 干濕地의 水生管束植物에 관한 硏究 - 河口堰 建設 前後의 干濕地 植生의 生産性 比較)

  • Yoon, Hae Soon
    • The Korean Journal of Ecology
    • /
    • v.14 no.1
    • /
    • pp.63-73
    • /
    • 1991
  • Nakdong estuary provides the largest wintering grounds for migrating waterfowls in Korea, and was designated Natural Monument No. 179 in 1966. Nakdong barrage and related construction-projects finished in 1987 to increase freshwater-supply to nearby Pusan metropolitan area and to reclaim the vast intertidal areas for land development. Changes on distribution, primary productivity, and standing crop of Schoenopluctus triqueter, the dominant species in this intertidal flats, were investigated after the construciton, during the 1988-1990, and were compared to those before the construction. Total standing crop. tuber biomass and net primary productivity of S. triqueter increased in 1988 and 1989, but decreased slightly in 1990. Increase of tuber biomass means an increase in available food, thus the carrying capacity, for swans wintering in this area. Habitat environment of this estuary should be protected and managed as a wintering ground for migrating waterfowls, inspite of the construction of the barrage.

  • PDF

Comparison of Productivity and Feed Value of Silage Corn according to the Cutting Height

  • Yan Fen Li;Li Li Wang;Young Sang Yu;Xaysana Panyavong;Hak Jin Kim;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • Corn silage is extensively utilized in ruminant feeding on a global scale, with substantial research efforts directed towards enhancing its nutritional worth and managing moisture content. The purpose of this study was to assess the impact of normal cutting height and elevated cutting height on whole-crop corn silage. Corn was harvested at heights of 15 cm and 45 cm above the ground, respectively, 45 days after heading. The harvested corn was cut into 2-3 cm lengths and packed into 20-liter plastic silos in triplicate. The results showed that dry matter (DM), crude protein (CP), water soluble carbohydrates (WSC), and in vitro dry matter digestibility (IVDMD) of C45 were significantly higher than those of the control, while the neutral detergent fiber (NDF) was significantly lower in C45 (p<0.05). The C15 had higher yields than C45 (p<0.05). There was no significant difference in the total digestible nutrients (TDN) yield of whole-crop corn silage. The increase in cutting height resulted in a larger change in moisture content and NDF per centimeter. After 60 days-ensiling, C45 showed significantly lower NH3-N concentrations. Moreover, C45 had significantly higher lactic acid concentration, lactic acid/acetic acid ratio, and lactic acid bacteria count compared to the control. Mold was not detected and the yeast count was less than 2 log10 cfu/g fresh matter in both control and C45. In summary, C45 improved the feeding value and fermentation quality of whole-crop corn silage at the expense of forage productivity.

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

The Contribution of Molecular Physiology to the Improvement of Nitrogen Use Efficiency in Crops

  • Hirel, Bertrand;Chardon, Fabien;Durand, Jacques
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.123-132
    • /
    • 2007
  • In this review, we discuss the ways in which our understanding of the controls of nitrogen use efficiency applied to crop improvement has been increased through the development of molecular physiology studies using transgenic plants or mutants with modified capacities for nitrogen uptake, assimilation and recycling. More recently, exploiting crop genetic variability through quantitative trait loci and candidate gene detection has opened new perspectives toward the identification of key structural or regulatory elements involved in the control of nitrogen metabolism for improving crop productivity. All together these studies strongly suggest that in the near future nitrogen use efficiency can be improved both by marker-assisted selection and genetic engineering, thus having the most promise for the practical application of increasing the capacity of a wide range of economically important species to take up and utilize nitrogen more efficiently.

  • PDF