• Title/Summary/Keyword: Crop Requirement

Search Result 139, Processing Time 0.019 seconds

Oxygen Requirement for Germination of Weed Seeds (주요잡초 종자의 발아시 산소 요구도)

  • ;T. Y. Kataoka
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.2
    • /
    • pp.145-149
    • /
    • 1978
  • This experiments were conducted to find out the physiological characteristics of lowland weed for physiological control. Temperature, moisture, light, oxygen. carbon dioxide and soil texture effect on germination and sprouting of weed seed. But this research was conducted to know the relationship between oxygen concentration and germination on 7 species weed.

  • PDF

영농방식변화에 따른 논용수량 산정 시스템 개발

  • Ju, Uk-Jong;Kim, Jin-Taek;Park, Gi-Uk;Lee, Yong-Jik
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.82-90
    • /
    • 2006
  • The practical date of rice growing stages and the date for calculating the water demand in paddy field have differences. The causes are rice planting water requirement, nursery bed area and change of average temperature and so on. Some recent papers have shown the same results. So we have investigated the nursery period, rice transplanting period and mid-summer drainage and developed a system for estimating water demand. And we calculated the water demand by using the system. The result showed that calculation by using the new system is more appropriate than the calculation by using the established period. But because water losses in canals and crop coefficient are not determined appropriately, we can calculate the agricultural water demand more accurately by dstablishing canal losses ratio, crop coefficient and so on.

  • PDF

Determining Irrigation Requirements and Water Management Practices for Normal Growth of Dry Field Crops in Reclaimed Tidelands (간척지 밭작물의 정상생육을 위한 관개용수량 및 물 관리방법의 결정)

  • 구자웅;한강단;손재권;이동유
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.80-96
    • /
    • 1992
  • This study was carried out in order to determin optimum irrigation requirements and water management practices for normal growth of dry field crops in reclaimed tidelands, and apply m planning of the irrigation projects. Desalinization experiments were performed by water management practices in the experimental field with high salt concentration, and growth experiments were conducted by irrigation point treatments using tomato and beet with relatively high salt tolerance. The results obtained from this study were summarized as follows : 1. Leaching or rinsing-leaching method was found to be effective in desalinizing the reclaimed tideland with rather high permeability. In this case, the water requirement for desalinizing the root zone layer of 40cm in depth, was estimated to be 1,200mm in depth. 2.The gypsum treatment in the desalinization of reclaimed tidelands, was ineffective in water requirements ; however, it could produce the desired effect in the facility of desalinization and the shortening of desalinization period with the sustaining permeability, in case of the desalinization by leaching method. 3.The optimum irrigation point which maintains the salt concentration within salt tolerance and maximizes the crop yield in reclaimed tidelands of silt loam soil, was found to be pF 1.6 in tomato and pF 1.8 in beet. The interval of irrigation date within 2 days was proved to he effective in both cases. 4.The optimum irrigation requirement and the water reguirement for the prevention of salt rise during the growing period after transplanting, were estimated to be 602mm(6.7mm/day) and 232mm for tomato, respectively. 5.The optimum irrigation requirement and the water requirement for the prevention of salt rise during the growing period after transplanting, were estimated to be 261mm(3.7mm/day) and 66mm for beet, respectively.

  • PDF

The Optimum Irrigation Level and the Project Water Requirement for Upland Crops (밭 작물의 최적관개수준과 계획용수량 산정)

  • 윤학기;정상옥;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.72-86
    • /
    • 1990
  • This study was carried out to get the basic information of irrigation plans for upland crops such as the optimum irrigation level and the project water requirement. Red peppers and cucumbers were cultivated in PVC pot lysimeters filled with 60cm deep clay loam soil. Four tensiometers were installed in each pot to measure the soil water pressure head. Six levels of irrigation were used. The results obtained from this study are summarized as follows: 1.The optimum irrigation level. The irrigation level of FC-PF2.7 was found to be the optimum level for both red pepper and cucumber with respect to the yield and the weight per fruit. In case of FC-PF2.7, total ET during the irrigation period were 1005.2mm for red pepper, and 429.6mm for cucumber, respectively. 2.soil moisture extraction patterns. Average soil moisture extraction patterns (SMEP)during the irrigation period were from 1st soil layer 43% : 32% : 16% : 9% for red pepper and 39% : 34% : 15% : 12% for cucumber, respectively. The extraction ratio of the upper soils showed very large values during the early stage of growth and decreased largely during the middle stage, and became larger in the last stage. 3.The project water requirement. Among the reference crop evapotranspiration(ETo) computation methods presented by FAO, the Penman method was found to be the best. The effective rainfall was computed by a modified USDA-SCS curve number equation. Availability ratios of the total rainfall during irrigation season were 59.2% for red pepper and 48.9% for cucumber, respectively. Net project water requirement of design year are 837.3mm for red pepper. and 502.Smm for cucumber, respectively.

  • PDF

pH Buffer Capacity and Lime Requirement of Korean Acid Soils (한국산성토양의 pH 완충력과 석회소요량 특성)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Zhang, Yong-Sun;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.378-382
    • /
    • 2004
  • Soil pH is an important indicator for soil reactions and crop growth. pH buffer capacity and lime requirements are necessary to comprehend and manage soils well. The characteristics related with soil pH were analyzed and 5 field trials were conducted to elucidate pH buffer capacity of soil and lime requirements and liming factor for Korean acid soils. Soil minerals were analyzed for the soil of 2 years after treating $CaCO_3$ using X-ray diffraction. The amount of neutralized $H^+$ was regarded as the exchangeable aluminium overcoming ${\Delta}pH$, because pH buffer capacity of soil depended on exchangeable aluminium. Lime requirement was somewhat similar to the KCl exchangeable aluminium and it was also affected by the exchangeable cation by added lime. X-ray diffraction analyses revealed that an aluminium dissociation from Korean acid soils was equilibrated with kaolin minerals and changed into anorthite ($CaAl_2Si_2O_8$) by neutralizing with $CaCO_3$. Neutralizing process was composed of changing process of $Al^{3+}$ into $H^+$ and $Al(OH)_4{^-}$ ionic species and of neutralizing $H^+$ by, the amount of which was lime requirement. The fact that anorthite dissociates an aluminium ion higher than kaolinite does enabled to consider a liming factor (LF) the content of exchangeable cation and ${\Delta}pH$, $LF=1.5+0.2{\times}{\sum} Cations{\times}{\Delta}pH$.

Estimation of Water Footprint for Upland Crop Production in Korea (한국의 밭작물 생산에서의 물발자국 산정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • Water footprint is defined as the total volume of direct and indirect water used to produce a good and service by consumer or producer, and measured at the point of production based on virtual water concept. The green and blue water footprint refers to the volume of the rainwater and the irrigation water consumed, respectively. Crop water footprint is expected to be used as the basic data for agricultural water resources policies at production, consumption and trade aspect. Thus, it is necessary to estimate suitable green and blue water footprint for South Korea. The objective of this paper is to quantify the green and blue water footprint and usage of upland crops during the period 2001-2010. To estimate the water footprint, 43 upland crop production quantity and harvested area data were collected for 10 years and FAO Penman-Monteith equation was adopted for calculating crop water requirement. As the results, the water footprint of cereals, vegetables, fruits and oil crops accounted for 1,994, 165, 605, and 4,226 $m^3/ton$, respectively. The usage of water footprint for crop production has been estimated at 3,499 (green water) and 216 (blue water) $Mm^3/yr$ on average showing a tendency to decrease. Fruits and vegetables have the largest share in the green water usage, consuming about 1,200 and 1,060 $Mm^3/yr$ which are about 65 % of gross usage. The results of this study are expected to be understood by the agricultural water footprint as well as by the total water footprint from both a production and consumption perspective in Korea.

Enhanced Seed Development in the Progeny from the Interspecific Backcross (Fagopyrum esculentum ${\times}$ F. homotropicum) ${\times}$ F. esculentum

  • Shin, Dong-Hoon;Kamal, A H M;Yun, Young-Ho;Bae, Jeong-Sook;Lee, Yun-Sang;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.209-214
    • /
    • 2009
  • To facilitate the introgression of F. esculentum into the traits of F. homotropicum, several accessions of the hybrids between these two species were pollinated with F. esculentum as the recurrent parent. The embryo in vitro rescue was performed to increase the recovery of backcross progenies. The $F_{2}$ generation was more amenable than $F_{1}$ hybrids to produce backcross progenies. The $F_{1}$ hybrids were backcrossed twice with common buckwheat (pin-type F. esculentum) (recurrent backcrossing). Also, alternate backcrosses with common buckwheat and F. homotropicum (congruity backcrossing) were carried out. Pollen tube growth of BC$F_{1}$ ${\times}$ F. esculentum (thrum) and F. homotropicum ${\times}$ BC$F_{1}$ was the disturbed penetration exceeded for all initial interspecific hybrids, and its requirement was proportionally lower when the common buckwheat was used as the recurrent parent and as the last parent of congruity hybrids. Effects of both common buckwheat and F. homotropicum on seed success rate for hybridization were observed. Growth of hybrid embryos before rescue, regeneration of mature hybrids all increased recurrent and congruity backcrosses and inter-crosses between $F_{1}$ plants and selected fertile plants of the second congruity backcrosses.

Perspectives on high throughput phenotyping in developing countries

  • Chung, Yong Suk;Kim, Ki-Seung;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.317-323
    • /
    • 2018
  • The demand for crop production is increasingly becoming steeper due to the rapid population growth. As a result, breeding cycles should be faster than ever before. However, the current breeding methods cannot meet this requirement because traditional phenotyping methods lag far behind even though genotyping methods have been drastically developed with the advent of next-generation sequencing technology over a short period of time. Consequently, phenotyping has become a bottleneck in large-scale genomics-based plant breeding studies. Recently, however, phenomics, a new discipline involving the characterization of a full set of phenotypes in a given species, has emerged as an alternative technology to come up with exponentially increasing genomic data in plant breeding programs. There are many advantages for using new technologies in phenomics. Yet, the necessity of diverse man power and huge funding for cutting-edge equipment prevent many researchers who are interested in this area from adopting this new technique in their research programs. Currently, only a limited number of groups mostly in developed countries have initiated phenomic studies using high throughput methods. In this short article, we describe the strategies to compete with those advanced groups using limited resources in developing countries, followed by a brief introduction of high throughput phenotyping.

Effect of Tillage Methods on Rice Yield and Soil Properties under Different Soil Textures (토성별 경운방법이 벼 수량과 토양특성에 미치는 영향)

  • 허봉구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.290-295
    • /
    • 1993
  • To evaluate rice yield and changes of soil properties, 3 tillage methods including no tillage was tested in different soil textures, such as silty clay, sandy loam and silt loam fields. Hwaseongbyeo was transplanted by machine at May 28. Water and soil temperature of no tillage were lower than other plots, but differences of temperature were not larger in different treatments. Mean water requirement in depth of sandy loam field was larger than other textures, but that of silty clay field was smaller. The water requirement in depth of no tillage was larger by 1.4~2.2mm / day than the other plots. In the silty clay field, mineral contents, except Na$_2$O content, of rice plant of no tillage plot at the harvesting stage was higher than the other treatments. The rice yields in the no tillage plot were decreased by 18% in sandy loam, by 7% in silty clay and by 1% in silt loam respectively than the power tiller plots.

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.