• Title/Summary/Keyword: Critical temperature$(T_c)$

Search Result 278, Processing Time 0.024 seconds

c-axis Tunneling in Intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ Single Crystals

  • Lee, Min-Hyea;Chang, Hyun-Sik;Doh, Yong-Joo;Lee, Hu-Jong;Lee, Woo;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.260-260
    • /
    • 1999
  • We compared c-axis tunneling characteristics of small stacked intrinsic Josephson junctions prepared on the surface of pristine, I-, and HgI$_2$-intercalated Bi$_2Sr_2CaCu_2O_{8+x}$ (Bi2212) single crystals. The R(T) curves are almost metallic in I-Bi2212 specimens, but semiconducting in HgI$_2$-Bi2212 ones.· The transition temperatures were 82.0 K, 73.0 K, and 76.8 K for pristine Bi2212, I-Bi2212, and HgI2-Bi2212 specimens, respectively, consistent with p-T$_c$ phase diagram. Current-voltage (IV) characteristics of both kinds of specimens show multiple quasiparticle branches with well developed gap features, indicating Josephson coupling is established between neighboring CuO$_2$ planes. The critical current I$_c$ of I-Bi2212 is almost the same as of that of pristine crystals, but I$_c$ is much reduced in Hgl$_2$-Bi2212. In spite of expanded interlayer distances, the interlayer coupling is not significantly affected in I-Bi2212due to holes generated by iodine atoms. The coupling in HgI$_2$-Bi2212 is, however, weakened due to inertness of HgI$_2$ molecules and the expansion of interlayer distance. Relation between the superconducting transition temperature T$_c$ and the critical current I$_c$ seems to contradict Anderson's interlayer-pair-tunneling theory but agree with a modified version of it.

  • PDF

Superconducting Properties of Mg(B1-xCx)2 Bulk Synthesized Using Magnesium and Glycerin-treated Boron Powder (마그네슘과 글리세린 처리한 붕소 분말로 합성한 Mg(B1-xCx)2의 초전도 특성)

  • Kim, Yi-Jeong;Jun, Byung-Hyuk;Park, Soon-Dong;Tan, Kai Sin;Kim, Bong-Goo;Sohn, Jae-Min;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.182-187
    • /
    • 2008
  • Carbon was known to be one of effective additives which can improve the flux pinning of $MgB_2$ at high magnetic fields. In this study, glycerin $(C_3H_8O_3)$ was selected as a chemical carbon source for the improvement of critical current density of $MgB_2$. In order to replace some of boron atoms by carbon atoms, the boron powder was heat-treated with liquid glycerin. The glycerin-treated boron powder was mixed with an appropriate amount of magnesium powder to $MgB_2$ composition and the powder pallets were heat treated at $650^{\circ}C\;and\;900^{\circ}C$ for 30 min in a flowing argon gas. It was found that the superconducting transition temperature $(T_c)$ of $Mg(B_{1-x}C_x)_2$ prepared using glycerin-treated boron powder was 36.6 K, which is slightly smaller than $T_c$(37.1 K) of undoped $MgB_2$. The critical current density $(J_c)$ of $Mg(B_{1-x}C_x)_2$ was higher than that of undoped $MgB_2$ and the $T_c$ improvement effect was more remarkable at higher magnetic fields. The $T_c$, decrease and $J_c$ increase associated with the glycerin treatment for boron powder was explained in terms of the carbon substitution to boron site.

Fabrication of YBCO films on metal tapes by the TFA-MOD process (TFA-MOD법에 의한 금속기판 위 YBCO 박막 제조)

  • Shin Geo-Myung;Song Kyu-Jung;Park Chan;Moon Seung-Hyun;Yoo Sang-Im
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.92-96
    • /
    • 2005
  • YBCO thin films on metal substrates were prepared by the metal-organic deposition using trifluoroacetates (TFA-MOD). To compensate the loss of Ba element from the precursor films due to the reaction with $CeO_2$ cap layer, we have employed Ba-excessive precursor solutions of $YBa_{2+x}Cu_{3}O_{7-{\delta}}$ ($0{\le}x{\le}0.1$). The precursor solutions were dip-coated on the metal substrates with $CeO_2$ cap layer, initially heated up to $400^{\circ}C$, and finally fired at the various high temperatures for 2 h in a reduced oxygen atmosphere. With this approach, YBCO films possessing critical temperature over 85 K could be successfully prepared on the metal substrates. The highest $T_{c,zero}$ value of 86 K was obtained from the Ba-excessive YBCO film of x=0.005 in $YBa_{2+x}Cu_{3}O_{7-{\delta}}$ fired at $750^{\circ}C$ for 2 h. However, unexpected $T_c$ suppression even in Ba-excessive YBCO samples requires further identification.

  • PDF

High Temperature Deformation Behavior of 304 Stainless Steel (304 오스테나이트계 스테인레스강의 고온변형 거동)

  • 조상현;김성일;노광섭;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.139-146
    • /
    • 1996
  • The torsion tests in the range of 900~1100$^{\circ}C$ and 5.0X10-2~5.0X100/sec were performed to study the high temperasture deformation behavior kinetics of 304 stainless steels. The flow curves and microstructures exhibited the characteristic of dynamic recrystallization(DRX). The relationship between the critical strain($\varepsilon$c) for the initiation of dynamic recrystallization and the peak strain($\varepsilon$p) could be expressed as $\varepsilon$c=0.73$\varepsilon$p. The dependence of the flow stress on temperature(T) and stain rate($\varepsilon$) was expressed by hyperbolic sine law, $\varepsilon$=2.75X1014 (sinh 0.076$\sigma$)5.26 exp(-379.55kJ/mol). Under the Zener-Hollomon parameter, Z value of 1013 order, it was found that the grain size was 20${\mu}$m. The relationship between the grain size, dDRX and Z parameter was expressed as dDRX =139.48-7.33 log Z.

  • PDF

Study on the Lubrication Characteristics at the Elevated Temperature in Hot Forging Test with Extruded AZ80 Mg Alloy (AZ80 압출재를 이용한 고온단조 윤활특성 분석)

  • Yoon, J.H.;Lee, S.I.;Jeon, H.W.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper demonstrates the lubricant performance in T-shape hot forging of Mg alloys. This processes induces complex plastic material flow of the initial billet such as simultaneous compression and extrusion deformations. Five lubricants with different amounts of graphite are applied to the T-shape forging at temperatures of 300 and $350^{\circ}C$. As the amount of graphite in the lubricant increases, the extruded depth gradually increases, which improves hot forgeability for Mg alloys. However, the lubricant performance decreases as forging temperature increases from 300 to $350^{\circ}C$. As the punch stroke increases, forgeability is considerably influenced by the lubricant. Thus, the selection of lubricants in hot forging of Mg alloys is critical when plastic deformation is severe.

Epitaxy of Si and Si1-xGex(001) by ultrahigh vacuum ion-beam sputter deposition

  • Lee, N. E.;Greene, J. E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • Epitaxial undoped and Sb-doped si films have been grown on Si(001) substrates at temperatures T between 80 and 750$^{\circ}C$ using energetic Si in ultra-high-vacuum Kr+-ion-beam sputter deposition(IBSD). Critical epitaxial thicknesses te, The average thickness of epitaxial layers, in undoped films were found to range from 8nm at Ts=80$^{\circ}C$ to > 1.2 ${\mu}$m at Ts=300$^{\circ}C$ while Sb incorporation probabilities $\sigma$sb varied from unity at Ts 550$^{\circ}C$ to 0.1 at 750$^{\circ}C$. These te and $\sigma$Sb values are approximately one and one-to-three orders of magnitude, respectively, higher than reported results achieved with molecular-beam epitaxy. Plan-view and cross-sectional transmission electron microscopy, high-resolution x-ray diffraction, channeling and axial angular-yield profiles by Rutherford back scattering spectroscopy for epitaxial Si1-x Gex(001) alloy films (0.15$\leq$x$\leq$0.30) demonstrated that the films are of extremely high crystalline quality. critical layer thicknesses hc the film thickness where strain relaxation starts, I these alloys wre found to increase rapidly with decreasing growth temperature. For Si0.70 Ge0.30, hc ranged from 35nm at Ts=550$^{\circ}C$ to 650nm at 350$^{\circ}C$ compared to an equilibrium value of 8nm.

  • PDF

Predicting of Fire Characteristics of Flame Retardant Treated Douglas fir Using an Integral Model (적분모델을 이용한 난연처리된 Douglas fir의 화재특성 예측)

  • Park, Hyung-Ju;Kim, Hong;Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.98-104
    • /
    • 2005
  • This study experimentally and theoretically examines the fire characteristics of 100- by 100- by 50-mm samples of flame retardant treated Douglas fir. Samples were exposed to a range of incident heat fluxes 10 to $50kW/m^2$. The time to ignition measurements obtained from the cone heater were used to derive characteristic properties of the materials. A one-dimensional integral model has been used to predict the, time to ignition, critical heat flux and ignition temperature of samples. Ignition data and best-fit curves confirm ${{\dot{q}}_i}^{'}{\rightarrow}{{\dot{q}}_{cr}^{'}\;then\;t_{ig}{\rightarrow}{\infty}$ and when ${{\dot{q}}_i}^'{\gg}{{\dot{q}}_{cr}^'\;then\;t_{ig}{\rightarrow}0$. And Ignition of flame retardant treated samples occurred not at incident heat flux of bellow $10kW/m^2.$. By a one-dimensional integral model, the critical heat flux of each samples was predicted $10.21kW/m^2,\;11.82kW/m^2,\;and\;14.16kW/m^2$ for the D-N, D-F2, and D-F4, respectively. In ignition temperature of each samples, flame retardant treated samples were measured high about $50^{\circ}C$ than non-treated samples. Water-soluble flame retardant used in this study finds out more effect in delay of time to ignition when incident heat flux is low than high.

Fabrication of the Bulk Superconductor by Thermal Diffusion Process (열확산 프로세스에 의한 초전도 벌크 합성)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.461-465
    • /
    • 2021
  • A diffusion heat treatment process for YBa2Cu3O7-y bulk superconductor in a Gd2O3 powder was attempted. As a result of measuring the critical temperature of the superconducting bulk, there was no change in the superconducting transition temperature as the Gd particles diffused into the YBa2Cu3O7-y lattice, resulting in dense microstructure. As a result of measuring the critical current, the critical current density (Jc) of the superconducting bulk having treated by the Gd thermal diffusion treatment at 0 T increased to 3×104 A/cm2 at 0 T, which was higher than that of the superconducting bulk without thermal diffusion treatment. The surface magnetic force of the superconducting bulk with Gd thermal diffusion treatment was observed at the center of the superconducting bulk with the maximum trapped magnetic force (Hmax) of 1.51 kG. This result means that the Gd thermal diffusion treatment contributes to improving the critical current density Jc of YBa2Cu3O7-y, and it is believed that Gd particles migrating into the superconducting bulk through thermal diffusion either fill the surface pores of YBa2Cu3O7-y superconductors or act as a flux pinning center.

Metal-to-Insulator Transitions in La2/3Sr1/3MnO3/LaMnO3 (LSMO/LMO) Superlattices

  • Ryu, Sang-Woo;Jang, Hyun-M.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.734-737
    • /
    • 2006
  • A series of manganite-based superlattices composed of half-metallic $La_{2/3}Sr_{1/3}MnO_3/LaMnO_3$ and insulating LaMnO$_3$ stacking layers were fabricated by employing pulsed laser deposition method. The dc resistivity increased drastically by simply reducing the stacking periodicity. The resistivity enhancement was accompanied by a gradual decrease in the temperature (T$_c$) of the Metal-to-Insulator Transition (MIT). This observation was interpreted as a small decrease in the effective metallic fraction near the percolation threshold. For the stacking periodicity less than a certain critical value, there appeared another transition to an insulating state at temperatures far below T$_c$. This low-temperature transition seems to be closely related to the AF-type (C-type) orbital ordering in newly formed insulating domains.

Fabrication of High-Quality $SmBa_{2}Cu_{3}O_{7-{\delta}}$ Thin Films by a Modified TFA-MOD Process (수정된 TFA-MOD법에 의한 $SmBa_{2}Cu_{3}O_{7-{\delta}}$ 박막의 제조)

  • Kim Duck-Jin;Song Kyu-Jeong;Moon Seung-Hyun;Park Chan;Yoo Sang-Im
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.77-82
    • /
    • 2005
  • We report a successful fabrication of high-quality $SmBa_{2}Cu_{3}O_{7-{\delta}}$ (SmBCO) thin films on $LaAlO_3$(LAO)(100) single crystalline substrates by a modified TFA-MOD method. After the pyrolysis heat treatment of spin-coated films up to $400^{\circ}C$, SmBCO films were fired at various temperatures ranging from 810 to $850^{\circ}C$ in a reduced oxygen atmosphere (10 ppm $O_2$ in Ar). Optimally processed SmBCO films exhibited the zero-resistance temperature ($T_{c,zero}$) of 90.2 K and the critical current density ($J_c$) of $0.8\;MA/cm^2$ at 77K in self-field. Compared with the $J_c$ values (normally, > $2\;MA/cm^2$ at 77 K) of MOD-TFA processed YBCO films, rather depressed $J_c$ values in SmBCO films are most probably attributed to the existence of ${\alpha}$-axis oriented grains.

  • PDF