• Title/Summary/Keyword: Critical stress ratio

Search Result 223, Processing Time 0.028 seconds

Bidirectional Quasi-Cuk DC/DC Converter with Reduced Voltage Stress on Capacitor and Capability of Changing the Output Polarity

  • Asl, Elias Shokati;Sabahi, Mehran
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1108-1113
    • /
    • 2017
  • In this paper, a bidirectional topology for quasi-Cuk dc/dc converter with capability of zero-voltage and zero-current-switching (ZVZCS) is proposed. The bidirectional quasi-Cuk (BQ-Cuk) converter has different voltage and current transfer ratio, reduced voltage stress on capacitor and capability of changing the output polarity in comparison with conventional bidirectional Cuk converter. In this paper, steady-state analysis of the quasi-Cuk converter with capability of ZVZCS in turn-on is presented. Then, critical inductances for transient from this operation to two new operations are calculated. Next, besides values designing of used elements, maximum and minimum value of their current and voltage are calculated. Finally, experimental results to verify the accuracy of the proposed converter in different operating modes are presented.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

Critical State of Crushable Jeju Beach Sand (파쇄성이 큰 제주해사의 한계상태 특성)

  • Lee, Moon Joo;Bae, Kyung Doo;An, Sung Mo;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.133-140
    • /
    • 2010
  • A series of triaxial test was performed in order to determine critical state parameters of calcareous Jeju sand, which comprises angular shape particles with many pores in the surface. It is observed that Jeju sand mainly shows the contractive behavior during triaxial shear due to high extreme void ratios and large compressibility. The peak friction angle of Jeju sand decreases slightly with increasing mean effective stress due to the particle crushing of carbonate materials. However, the peak friction angle of Jeju sand is higher than that of other silica sands because of the more angular particle shape. The critical state friction angle of Jeju sand gradually decreases when the mean effective stress at a critical state increases. Whereas, there is not a clear influence of void ratio on the critical state friction angle. Critical state parameters of Jeju sand are similar to those of calcareous sands, but significantly larger than those of common sands.

Strength Characteristics in Drained Triaxial Tests on Granular Materials (사질토의 배수삼축압축시험에서의 강도특성)

  • 장병유;송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.33-42
    • /
    • 1992
  • The shear strength of cohesionless Soils results from particle-to-particle friction and structural resistance by interlocking. And, the shear strength of soils is subjected to vary depending on the internal states and external condtions. If the volume change occurring in the soils and stress-strain relationships under the internal and external changes can accrurately he described, it is possible to predict the behaviors of soils. To accomplish these objectives a series of drained triaxial compression tests and isotropic compression test was performed on the Banwol sand at different relative densities ranging from 20% to 80% and different confining pressures ranging from 0.4kgf/cm$^2$ to l2kgf/cm$^2$. The results and main conclusions of the study are summarized as follows; 1.When the relative density or the confining pressure is increased, the maximum deviator stress is increased. The ratio of the maximum deviator stress and the confining pressure is linearly proportional to the relative density. 2.It is observed that the dilatancy depends not only upon its relative density but also the confining stress, and that the maximum deviator stress is obtained after the diatancy occurs. 3.The volume of sands undergoes initial contraction prior to the dilatancy occurred by strain softening. The dilatancy rate eventually approaches the critical state or a constant volume. 4.At lower strains, Poisson's ratio approaches a certain minimum value regadless of the state of materials. At larger strains, however, the ratio is increased as the relative density is increased. 5.It is observed that the modulus of elasticity is linearly proportional to the relative density and the pressure. 6.When the relative density is increased, the friction angle of sands is linearly increased. 7.When the relative density is increased, the expansion index and the compression index are linearly decreased, and the ratio of the two is about 1/3.

  • PDF

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Response of lap splice of reinforcing bars confined by FRP wrapping: modeling approach

  • Thai, Dam Xuan;Pimanmas, Amorn
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.95-110
    • /
    • 2011
  • This paper presents a tri-uniform bond stress model for predicting the lap splice strength of reinforcing bar at the critical bond splitting failure. The proposed bond distribution model consists of three zones, namely, splitting zone, post-splitting zone and yielding zone. In each zone, the bond stress is assumed to be constant. The models for bond strength in each zone are adopted from previous studies. Combining the equilibrium, strain-slip relation and the bond strength model in each zone, the steel stress-slip model can be derived, which can be used in the nonlinear frame analysis of the column. The proposed model is applied to derive explicit equations for predicting the strength of the lap splice strengthened by fiber reinforced polymer (FRP) in both elastic and post-yield ranges. For design purpose, a procedure to calculate the required FRP thickness and the number of FRP sheets is also presented. A parametric investigation was conducted to study the relation between lap splice strength and lap splice length, number and thickness of FRP sheets and the ratio of concrete cover to bar diameter. The study shows that the lap splice strength can be enhanced by increasing one of these parameters: lap splice length, number or thickness of FRP sheets and concrete cover to bar diameter ratio. Verification of the model has been conducted using experimental data available in literature.

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

A Study on Extent of stress of Hospitalized Patient (입원환자의 스트레스 정도에 관한 연구)

  • 김행자
    • Journal of Korean Academy of Nursing
    • /
    • v.5 no.2
    • /
    • pp.29-37
    • /
    • 1975
  • The purpose of this study was to measure the extent of stress existing in hospitalized patients which might play an important part in delaying recovery of patients. The study was conducted July l0th through 16th, 1975; a total of 146 patients from 2 general hospitals in Seoul were sampled. Questionnaire, formulated by the researcher, were used to gather necessary information concerning stress in accordance with the physical, psychological, economical and social variables. Data were analysed by mean stress score, and the significances were tested by Critical Ratio. The results were as follows ; 1. No significant difference was revealed in accordance with sex, however, male patients showed higher stress scores on the economic variables. 2. No. significant difference was apparent in accordance with marital status, however, the unmarried showed a tendency of higher stress scores at all variables. 3. Significant difference was revealed between the age group of 35-49 years and that of over 50 years; the age group of 18-34, and 35-49 years showed higher stress scores. 4. No. significant difference was revealed in accordance with previous experience of hospitalization, however, the group with previous experience tends to show higher stress scores in all variables. 5. No significant difference was revealed in accordance with the types of admission, however, group admitted on emergency showed higher stress scores compared to the group admitted plained in advance at social and economic variables. 6. No significant difference was revealed in accordance with the length of hospitalization, however, tendencies were apparent that the longer the length of hospitalization, the lower the mean stress scores.

  • PDF