• Title/Summary/Keyword: Critical state model

Search Result 465, Processing Time 0.025 seconds

Theoretical Modeling of the Kinetics of External Hydrogen Embrittlement (수소 취성 속도에 관한 이론적 모델링)

  • Han, Jeong-Seb;Macdonald, Digby D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.324-333
    • /
    • 2005
  • The kinetics of external hydrogen embrittlememt is considered. The equation of the crack growth rate (CGR) is derived from modification of the model developed by Wilkinson and Vitek. After calculation of hydrogen pressure build-up in the void, the effect of the internal hydrogen pressure on the void growth is added. The CGR is expressed by two terms. One is the term dependent on the critical stress, which is exactly same as Wilkinson and Vitek. The other is term dependent on the pressure of the hydrogen in void.

Cardiac Disorder Classification Using Heart Sounds Acquired by a Wireless Electronic Stethoscope (무선 전자청진 심음을 이용한 심장질환 분류)

  • Kwak, Chul;Lee, Yun-Kyung;Kwon, Oh-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.101-102
    • /
    • 2007
  • Heart diseases are critical and should be detected as soon as possible. A stethoscope is a simple device to find cardiac disorder but requires keen experiences in heart sounds. We evaluate a cardiac disorder classifier by using heart sounds recorded by a digital wireless stethoscope developed in this work. The classifier uses hidden Markov models with circular state transition to model the heart sounds. We train the classifier using two kinds of data: One recorded by using our stethoscope and the other sampled from a clean heart sound database. In classification experiments using 165 sound clips, the classifier shows the classification accuracy of 82% in classifying 6 cardiac disorder categories.

  • PDF

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

Optimal input cross-power spectra in shake table testing of asymmetric structures

  • Ammanagi, S.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1115-1132
    • /
    • 2015
  • The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

Laser Ablation : Fundamentals and applications in Micropatterning and Thin Film Formation

  • J. Heitz;D. Bauerle;E. Arenholz;N. Arnold;J.T. Dickinson
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.103-108
    • /
    • 1999
  • We present recent results on ablation mechanism, single-pulse laser micropatterning , pulsed-laser deposition(PLD) and particulates formation accompanying laser ablation, with special emplasis on polymers, in particular polymide, (PI), and polytetrafluoroethylene, (PTFE). Ablation of polymers is described on the basis of photothermal bond breaking within the bulk material. Here, we assume a first order chemical reaction, which can be described by an Arrhenius law. Ablation starts when the density of broken bonds at the surface reaches a certain critical value. Single-pulse laser ablation of polyimide shows a clear-length dependence of the threshold fluence. This experimental result strongly supports a thermal ablation model. We discuss the various possibilities and drawbacks of PLD and describe the morphology, physical properties and applications of PTFE films.

  • PDF

A modified Borresen's Coarse-Mesh Solution to the LRA-BWR Benchmark Problem (LRA-BWR 비등수형로에 대한 수정 Borresen 모델 해)

  • Chang Hyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.135-141
    • /
    • 1983
  • Computational accuracy of the modified Borresen's coarse-mesh diffusion theory scheme is investigated with the steady-state solutions of the two- and three-dimensional LRA-BWR bench-mark problem. By comparing the numerical results available for the critical eigenvalue and power distribution of the LRA-BWR, it is shown that the modified scheme is capable of predicting the power distribution of the multi-dimensional BWR problem with an improved accuracy.

  • PDF

A semi-analytical solution to spherical cavity expansion in unsaturated soils

  • Tang, Jianhua;Wang, Hui;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • This paper presents a rigorous solution for spherical cavity expansion in unsaturated soils under constant suction condition. The hydraulic behavior that describes the saturation-suction relationship is modeled by a void ratio-dependent soil-water characteristic curve, which allows the hydraulic behavior to fully couple with the mechanical behavior that is described by an extended critical state soil model for unsaturated soil through the specific volume. Considering the boundary condition and introducing an auxiliary coordinate, the problem is formulated to a system of first-order differential equations with three principal stress components and suction as basic unknowns, which is solved as an initial value problem. Parameter analyses are conducted to investigate the effects of suction and the overconsolidation ratio on the overall expansion responses, including the pressure-expansion response, the distribution of the stress components around the cavity, and the stress path of the soil during cavity expansion. The results reveal that the expansion pressures and the distribution of the stress components in unsaturated soils are generally higher than those in saturated soils due to the existence of suction.

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

STUDIES ON THE MATHEMATICAL KINETICS FOR THE REMOVABLE MOVING SCREEN MEDIA-ACTIVATED SLUDGE PROCESS (회전형 반고정망 활성슬럿지 공법의 수학적 해법에 관한 연구 1. 유기물 제거속도에 대하여)

  • HAN Ung-Jun;HAN Yeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 1979
  • It is preented the removable moving screen media-activated sludge (REMSMAS) process by using the biological fixed-film systems. The substrate removal kinetic difference between the aeration-only completed mixing activated sludge (CMAS) process and REMSMAS process were observed. The substrate removal kinetics were developed based on the attached and suspended microbial growths. The units of the aeration-only CMAS process were continously operated with the normal detention time of 4.5, 6, 9.5 and 12 flours studies after steady-state condition and the operating of the REMSMAS units conducted with the normal detention time of 6 and 12 hours studies in nonsteady-state condition. The feed solution was diluted 18 times to the raw starch wastewater in of order to maintain the proper COD (950mg/l) and BOD (450mg/l) concentration. Design parameters related to the suspended microbial growths were caculated by the equations used in the aeration-only CMAS model and these parameters used to evalute the kinetic constants in the REMSMAS process. The kinetic constant values of $Y_2,\;K_d,(\mu_{max})_s\;and\;K_s$ from Monod equations were respectively 0.78, 0.027/hr, 1.1/hr and 95mg/l in the aeration-only CMAS process. The value of the aera capacity (F) appeared to be $9.1\;mg/cm^2-day$ and the mean value of the saturation constant $(K_g)$ appeared to be 53.5 mg/l in the REMSMAs process. Also, the substrate removal .ate of the REMSMAS process was higher than that of the normal activated sludge process when this system was operated in steady-state condition. However, the rate was reduced as the critical operating day was approached.

  • PDF