• 제목/요약/키워드: Critical shear strain

검색결과 158건 처리시간 0.023초

한계전단변형률 개념을 이용한 터널의 지반이완하중 평가 (Evaluation of rock load based on critical shear strain concept on tunnels)

  • 김정주;이재국;김종욱;유한규
    • 한국터널지하공간학회 논문집
    • /
    • 제15권6호
    • /
    • pp.637-652
    • /
    • 2013
  • 터널의 지반이완하중 산정방법에는 이론식, 경험식, 수치해석적인 방법 등이 있는데 이론식과 경험식은 실무에 적용하기에는 많은 한계점이 있다. 따라서, 본 연구에서는 그 중에서 수치해석적 방법이 지반이완하중 산정에 필요한 모든 매개변수를 고려할 수 있고, 지반과 지보재의 상호작용을 모사할 수 있기 때문에 보다 합리적인 방법이라 판단하였다. 수치해석 결과를 바탕으로 명확한 지반이완영역을 결정하기 위하여 Sakurai(1981)의 한계전단변형률 개념을 이용하였다. Stable region의 경계영역인 Level 1의 지반이 완하중고를 산정한 결과 지반등급 3까지는 지반이완하중이 산정되지 않았고, 지반등급 4, 5에서는 기존 산정방법들에 비해 지반이완하중고가 작게 산정되어 보다 경제적인 콘크리트라이닝 설계가 가능할 것으로 판단하였다.

전단보강비에 따른 FRP 쉬트의 전단보강성능 (Shear Strengthening Effect of RC Beams with FRP Sheets with respect to Shear Reinforcement Ration)

  • 최기선;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.68-71
    • /
    • 2004
  • In the shear strengthening with FRP sheets, beams are wrapped around the webs and tension face of critical shear span by fiber sheets. The shear strength of RC beam strengthened with FRP sheets must be calculated based on the effective strain that can be developed in the FRP sheets at ultimate stage because the final failure modes of beams are governed by premature debonding of FRP sheet due to the limitation of bonded length by beam depth. An experimental study is carried out to evaluate the shear strengthening effect of AFRP or GFRP sheets with respect to shear reinforcement ratio of rebar. From the test results, it was found that the additional shear strength provided by GFRP or AFRP can be estimated by $p_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet $4,000m{\mu}$ proposed by ACI 440 committee.

  • PDF

On modeling coupling beams incorporating strain-hardening cement-based composites

  • Hung, Chung-Chan;Su, Yen-Fang
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.565-583
    • /
    • 2013
  • Existing numerical models for strain-hardening cement-based composites (SHCC) are short of providing sufficiently accurate solutions to the failure patterns of coupling beams of different designs. The objective of this study is to develop an effective model that is capable of simulating the nonlinear behavior of SHCC coupling beams subjected to cyclic loading. The beam model proposed in this study is a macro-scale plane stress model. The effects of cracks on the macro-scale behavior of SHCC coupling beams are smeared in an anisotropic model. In particular, the influence of the defined crack orientations on the simulation accuracy is explored. Extensive experimental data from coupling beams with different failure patterns are employed to evaluate the validity of the proposed SHCC coupling beam models. The results show that the use of the suggested shear stiffness retention factor for damaged SHCC coupling beams is able to effectively enhance the simulation accuracy, especially for shear-critical SHCC coupling beams. In addition, the definition of crack orientation for damaged coupling beams is found to be a critical factor influencing the simulation accuracy.

ECAE 전단 가공된 5083 알루미늄 합금의 고변형률 변형거동 (High Strain Rate Deformation Behavior of 5083 Aluminum Alloy Prepared via Equal Channel Angular Extrusion)

  • 김양곤;고영건;신동혁;이성학
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.397-405
    • /
    • 2009
  • The high strain rate deformation behavior of ultra-fine grained 5083 aluminum alloys prepared via equal channel angular (ECA) extrusion was investigated in this study. The microstructure of ECA extruded specimens consisted of ultra-fine grains, and contained a considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. According to the dynamic torsion test results, the maximum shear stress and fracture shear strain of the route A (no rotation) specimen were lower than those of route C ($180^{\circ}$ rotation) specimen since that adiabatic shear bands of $100{\mu}m$ in width were formed in the route A specimen. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity associated with ECA operations.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

The effect of strain on the electronic properties of MoS2 monolayers

  • Park, Soon-Dong;Kim, Sung Youb
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.305-314
    • /
    • 2016
  • We utilize first-principles calculations within density-functional theory to investigate the possibility of strain engineering in the tuning of the band structure of two-dimensional $MoS_2$. We find that the band structure of $MoS_2$ monolayers transits from direct to indirect when mechanical strain is applied. In addition, we discuss the change in the band gap energy and the critical stains for the direct-to-indirect transition under various strains such as uniaxial, biaxial, and pure shear. Biaxial strain causes a larger change, and the pure shear stain causes a small change in the electronic band structure of the $MoS_2$ monolayer. We observe that the change in the interaction between molecular orbitals due to the mechanical strain alters the band gap type and energy.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

A softening hyperelastic model and simulation of the failure of granular materials

  • Chang, Jiangfang;Chu, Xihua;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.335-353
    • /
    • 2014
  • The softening hyperelastic model based on the strain energy limitation is of clear concepts and simple forms to describe the failure of materials. In this study, a linear and a nonlinear softening hyperelastic model are proposed to characterize the deformation and the failure in granular materials by introducing a softening function into the shear part of the strain energy. A method to determine material parameters introduced in the models is suggested. Based on the proposed models the numerical examples focus on bearing capacity and strain localization of granular materials. Compared with Volokh softening hyperelasticity and classical Mohr-Coulomb plasticity, our proposed models are able to capture the typical characters of granular materials such as the strain softening and the critical state. In addition, the issue of mesh dependency of the proposed models is investigated.

Free-vibration and buckling of Mindlin plates using SGN-FEM models and effects of parasitic shear in models performance

  • Leilson J. Araujo;Joao E. Abdalla Filho
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.283-296
    • /
    • 2023
  • Free-vibration and buckling analyses of plate problems are investigated with the aid of the strain gradient notation finite element method (SGN-FEM). As SGN-FEM employs physically interpretable polynomials in developing finite elements, parasitic shear sources, which are the cause of shear locking, can be precisely identified and subsequently eliminated. This allows two mutually complementary objectives to be defined in this work, namely, evaluate the efficiency of free-vibration and buckling results provided by corrected models, and study the severity of parasitic shear effects on plate models performance. Parasitic shear are flexural terms erroneously present in shear strain polynomials. It is reviewed here that six parasitic shear terms arise during the formulation of the four-node Mindlin plate element. Two parasitic shear terms have been identified in the in-plane shear strain polynomial while other two have been identified in each of the transverse shear strain polynomials. The element is corrected a-priori, i.e., during development, by simply removing the spurious terms from the shear strain polynomials. The computational implementation of the element in its two versions, namely, containing the parasitic shear terms (PS) and corrected for parasitic shear (SG), allows for assessments of the accuracy of results and of the deleterious effects of parasitic shear in free vibration and buckling analyses. This assessment of the parasitic shear effects is a novelty of this work. Validation of the SG model is done comparing its results with analytical results and results provided by other numerical procedures. Analyses are performed for square plates with different thickness-to-length ratios and boundary conditions. Results for thin plates provided by the PS model do not converge to the correct solutions, which indicates that parasitic shear must be eliminated. That is, analysts should not rely on refinement alone. For thick plates, PS model results can be considered acceptable as deleterious effects are really critical in thin plates. On the other hand, results provided by the SG model converge well for both thin and thick plates. The effectiveness of the SG model is established via high-accuracy results obtained in several examples. It is concluded that corrected SGN-FEM models are efficient alternatives for free-vibration and buckling analysis of Mindlin plate problems, and that precise elimination of parasitic shear is a requirement for sound analyses.

2상 주조 스테인리스강의 열화로 인한 2축 피로수명의 변화와 예측 (A Change and Prediction of Biaxial Fatigue Life of Cast Duplex Stainless Steels by Degradation)

  • 권재도;박중철
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.410-418
    • /
    • 2004
  • The multiaxial fatigue test under in-phase and out-of$.$phase load were performed to study what degradation phenomenon affects fatigue life with virgin and 3600 hrs degraded materials. The various kind of fatigue data fur fatigue life prediction were acquired under pure axial and pure torsional load of fully reversal condition. The models which was investigated are: 1) the von Mises equivalent strain range, 2) the critical shear plane approach method of Fatemi-Socie(FS) parameter, 3) the modified Smith-Watson-Topper(SWT) parameter. The result showed that, fatigue life by material degradation are decreased and life prediction which was used the FS parameter is not conservative but the best result.