• Title/Summary/Keyword: Critical pressure

Search Result 1,582, Processing Time 0.032 seconds

The Effect of Dual-Task on Standing Postural Control in Persons With Chronic Stroke (만성 뇌졸중 환자의 기립 자세조절에 이중 과제가 미치는 영향)

  • Jeon, Hye-Won;Chung, Yi-Jung
    • Physical Therapy Korea
    • /
    • v.17 no.3
    • /
    • pp.20-30
    • /
    • 2010
  • This study examined whether any changes by mental task types on postural control in chronic stroke persons. Sixteen chronic stroke persons (mean age=53.75 yr) and sixteen age-and gender-matched healthy controls (mean age=54.44 yr) took part in this study. Participants randomly performed three different tasks on the stable and unstable surfaces. The no mental task was to stand while holding a 100 g weight in each hand, the arithmetic task (mental task) was to perform a silent 1-backwards counting while standing and holding a 100 g weight in each hand, and the simple task (mental task) was to stand and hold with both hands a tray (200 g) on which a glass filled with water has been placed. Sway path and sway velocity of the center of pressure (COP) were measured to assess standing postural control by task performance using the force platform. According to the results, in stroke group, total sway path and total sway velocity of COP was significantly decreased during arithmetic and simple task compared to no mental task on the stable surface (p<.05), and sway path (anteroposterior AP, mediolateral ML) of COP, total and sway velocity (AP, ML, total) of COP was significantly decreased during arithmetic and simple task compared to no mental task on the unstable surface (p<.05). Especially, sway path (AP, total) of COP and sway velocity (AP, ML, total) of COP was significantly decreased under the simple task when compared to the arithmetic task on the unstable surface (p<.05). In healthy control group, sway path (AP, ML, total) of COP and sway velocity (AP, ML, total) of COP was significantly decreased during arithmetic and simple task compared to no mental task on the stable and unstable surface (p<.05), and sway path (AP, total) of COP and sway velocity (AP, ML, total) of COP was significantly decreased under the simple task when compared to the arithmetic task on the unstable surface (p<.05). In conclusion, the findings of this study showed that arithmetic and simple task improved standing postural control for chronic stroke patients and the type of arithmetic and simple tasks were critical factor that reduced standing postural sway in dual-task conditions. Future research should determine whether dual-task conditions, including simple task, would be effective as a training program for standing postural control of stroke patients.

Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam (분말활성탄 및 제올라이트 담지 폴리우레탄 담체를 이용한 바이오필터에서의 악취가스 제거)

  • Lee, Soo-Chul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.209-215
    • /
    • 2012
  • The performance and removal efficiencies of a pilot scale biofilter were estimated by using ammonia and hydrogen sulfide as the odorous gases. Expanded polyurethane foam coated with powdered activated carbon and zeolite was used as a biofilm supporting medium in the biofilter. Odorous gases from the sludge thickener of a municipal wastewater treatment plant were treated in the biofilter for 10 months and the inlet ammonia and hydrogen sulfide concentrations were 0.1-1.5 and 2-20 ppmv, respectively. The removal efficiencies reached about 100% at the empty bed retention time (EBRT) of 3.6-5 seconds except for the adaptation periods. The pressure drop of the biofilter caused by the gas flow was also low that the maximum attained was 31 mm $H_2O$ during the operation. Its stability was confirmed in the long term due to the fact that the biofilter and the polyurethane medium had a minimum plugging and compression. The microbial community on the medium is critical for the performance of the biofilter especially the distribution of ammonia oxidizing bacteria (AOB) and sulfur oxidizing bacteria (SOB). The distribution of Nitrosomonas sp. (AOB) and Thiobacillus ferroxidans (SOB) was confirmed by FISH (fluorescence in situ hybridization) analysis. The longer the operation time, the more microbial population observed. Also, the medium close to the gas inlet had more microbial population than the medium at the gas outlet of the biofilter.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

Work and Family Role Conflict and Management Strategies of Women Entrepreneurs in Contents Business (콘텐츠 비즈니스 여성기업인의 일/가족 역할갈등과 조정 전략)

  • Chun, Bang-Jee;Han, Mee-Ra
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.150-165
    • /
    • 2008
  • We examine how women entrepreneurs in contents business experience work/family role conflict and then reveal what kind of conflict management strategies they adopt in varying external and internal conditions. A critical problem faced by female entrepreneur is the tension that exists between their personal lives and business role. This tension is viewed as a form of inter-role conflict in which the role pressure from work and family competes for women's limited time and energy. First, we probe the content and nature of work- family role conflict on the part of female entrepreneurs. Second, we closely look at the three strategies of work/family role manipulation. Family role reduction strategy, work role reduction strategy, and work/family role sharing strategy are identified. Third, we discuss how the choice of the three strategies is affected by internal family salience and the external resources including spouse, family, and financial resources.

Structural Behaviors of Precast Concrete Box Structures Using Recycled Aggregate (순환골재 콘크리트 박스 구조의 거동)

  • Byun, Keun-Joo;Song, Ha-Won;Kim, Ho-Jin;Nam, Jin-Won;Kim, Ki-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.93-102
    • /
    • 2006
  • In order to use a recycled aggregate concrete for precast concrete box structures, the structural behaviors should be analytically and experimentally evaluated. In this study, full-scale precast concrete box structures are manufactured using the recycled aggregate (30% replacement) and natural aggregate. Then, the flexural failure test and shear failure test as well as water leakage lest for the structures arc carried out. First of all, test results of compressive strength show that recycled aggregate concrete is only 4% lower than normal concrete. In the flexural and shear failure test, the structural performances of precast box using the recycled aggregate concrete are 95% of the capacities of normal precast concrete box or more. Especially, the water leakage test shows that leakage pressure of recycled concrete box is more than the critical value, 60kPa, as well as 9% higher than normal precast concrete box. These test results are analyzed and compared with results of finite clement analysis. The comparison shows that test results are more excellent than analytical results. Also, the comparison confirms the applicability of recycled aggregate concrete for the use as practical precast concrete box structure.

  • PDF

Influence of Sleep-Related Breathing Disorders on Changes of Cardiovascular Function (수면과 관련된 호흡장애가 심혈관계의 기능 변화에 미치는 영향)

  • Moon, Hwa-Sik
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.2
    • /
    • pp.129-139
    • /
    • 1997
  • The data collected to date indicate that sleep-related breathing disorders, including sleep-disordered breathing(sleep apnea) and underlying respiratory system diseases, are one of the important risk factors for cardiovascular dysfunction. Sleep-disordered breathing(sleep apnea) is now recognized as one of the leading causes of systemic hypertension, cardiac arrhythmias, coronary heart disease, pulmonary hypertension, right heart failure, and stroke. Sleep may exert a profound effect on breathing in patients with underlying respiratory system disease including bronchopumonary diseases, chest wall abnormalities, central alveolar hypoventilation syndromes or respiratory neuromuscular disorders. Chronic hypoxia and hypercapnia in these patients may accelerate the development of long term cardiovascular complications such as cardiac arrhythmias, pulmonary hypertension, and right heart failure(cor pulmonale). Several recent studies reported that sleep-related breathing disorders are associated with long-term cardiovascular morbidity and mortality. Careful assessment of respiratory and cardiovascular function in these patients is critical. Aggressive and highly effective treatment of sleep-related breathing disorders using tracheostomy, mechanical ventilation, nasal continuous positive airway pressure therapy(nCPAP), intercurrent oxygen therapy or other interventions can reduce the prevalence of cardiovascular dysfunction and the long-term mortality.

  • PDF

FE Analysis on the Screwed Safety of a Valve for a LPG Bombe (LPG 용기용 밸브의 체결안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Oh, Kyong-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.79-84
    • /
    • 2007
  • In this paper, the finite element analysis of a valve screw for a LPG cylinder has been presented on the leakage safety and strength one, which are computed and investigated by a contact normal stress and von Mises stress between a female screw of a valve and a male screw of a neck ring in a LPG bombe. The LP gas charging pressure of a LPG bombe is $8{\sim}9kg/cm^2$, which is pressurized to the screw sealing contact areas between a valve and a LP gas cylinder. The peak failures of the screw tooth height due to a scratch wear and chipping loss of the contact area may decrease screw tooth strength and increase a leakage of a LP gas. These are strongly affect to the contact normal and von Mises stresses of the valve screws. The FEM computed results show that the tooth height loss due to a wear and chipping failure of the screw peak does not affect to the LP gas leak and strength of a valve screw theoretically. But if the tooth wear of the screw height of a brass valve overpasses the critical strength safety of the valve, the valve screw may be failed in fastening the valve and a LP gas bombe suddenly.

  • PDF

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Evaluation of Modified Soil-Plant-Atmosphere Model (mSPA) to Simulate Net Ecosystem Carbon Exchange Over a Deciduous Forest at Gwangneung in 2006 (2006년 광릉 활엽수림에서 순 생태계 탄소 교환량의 모의에 대한 modified Soil-Plant-Atmosphere (mSPA) 모델의 평가)

  • Lee, Young-Hee;Lim, Hee-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.87-99
    • /
    • 2009
  • We evaluated modified Soil-Plant-Atmosphere model's performance to simulate the seasonal variation of net ecosystem exchange (NEE) of carbon and examined the critical controlling mechanism on carbon exchange using the model over a deciduous forest at Gwangnung in 2006. The modified Soil-Plant-Atmosphere (mSPA) model was calibrated to capture the mean NEE during the daytime (1000-1400 LST) and used to simulate gross primary productivity (GPP). Ecosystem respiration ($R_e$) has been estimated using an empirical formula developed at this site. The simulation results indicated that the daytime mean stomatal conductance was highly correlated with daily insolation in the summer. Low stomatal conductance in high insolation occurred on the days with low temperature rather than with high vapor pressure deficit. It suggests that the forest rarely experienced water stress in the summer of 2006. The model captured the observed bimodal seasonal variation with a mid-season depression of carbon uptake. The model estimates of annual GPP, $R_e$ and NEE were $964\;gC\;m^{-2}\;yr^{-1}$, $733\;gC\;m^{-2}\;yr^{-1}$, and $-231\;gCm\;^{-2}\;yr^{-1}$, respectively. Compared to the observed annual NEE, the modeled estimates showed more carbon uptake by about $140\;gC\;m^{-2}\;yr^{-1}$. The uncertainty of the estimate of annual NEE in a complex terrain is discussed.