• Title/Summary/Keyword: Critical initial water content

Search Result 20, Processing Time 0.024 seconds

Settling Mode of the Dredged Soil (준설토의 침강형태에 관한 연구)

  • 윤상묵;장병욱;차경섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.63-73
    • /
    • 2003
  • The settling of the dredged soil may vary with mineral composition, grain size distribution, initial water content and salt concentration of suspension of the site. A series of settling column test was performed to investigate the behaviour of solid suspension material from dredging and reclamation. Settling mode was divided into four types from the observation of interface and settling curves of clay minerals and marine clay samples, and the relationship charts of salt concentration and the initial water content were established to use in the dredging operation with any salt concentration. The critical initial water content which was defined as a threshold of zone settling and the consolidation settling was varied with salt concentration of water and was proportional to the plasticity of soil in sea water.

Influencing of drying-wetting cycles on mechanical behaviors of silty clay with different initial moisture content

  • Shi-lin Luo;Da Huang;Jian-bing Peng;Fei Liu;Xiao-ran Gao;Roberto Tomas
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.307-317
    • /
    • 2024
  • To get a better understanding of the effect of drying-wetting cycles (DWC) on the mechanical behaviors of silty clay hiving different initial moisture content (IMC), the direct shear tests were performed on sliding band soil taken from a reservoirinduced landslide at the Three Gorges Reservoir area. The results indicated that, as the increasing number of DWC, the shear stress-displacement curves type changed from strain-hardening to strain-softening, and both the soil peak strengths and strength parameters reduced first and then nearly remain unchanged after a certain number of DWC. The effects of DWC on the cohesion were predominated that on the internal friction angle. The IMC of 17% is regarding as the critical moisture content, and the evolution laws of both peak shear strength and strength parameters presented a reversed 'U' type with the rising of the IMC. Based on it, a strength deterioration evolution model incorporating the influence of IMC and DWC was developed to describe the total degradation degree and degradation rate of strength parameters, and the degradation of strength parameters caused by DWC could be counterbalanced to some extent as the soil IMC close to critical moisture content. The microscopic mechanism for the soil strength caused by the IMC and DWC were discussed separately. The research results are of great significance for further understanding the water-weakening mechanicals of the silty clay subjected to the water absorption/desorption.

Experimental study on freezing point of saline soft clay after freeze-thaw cycling

  • Wang, Songhe;Wang, Qinze;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.997-1004
    • /
    • 2018
  • The brine leakage is a tough problem in artificial freezing engineering. This paper takes the common soft clay in Wujiang District as the study object, and calcium chloride solutions with six salinity levels were considered. The 'classic' cooling curve method was employed to measure the freezing point of specimens after freeze-thaw. Results indicate that four characteristic stages can be observed including supercooling, abrupt transition, equilibrium and continual freezing, strongly dependent on the variation of unfrozen water content. Two characteristic points were found from the cooling curves, i.e., freezing point and initial crystallization temperature. A critical value for the former exists at which the increment lowers. The higher the saline content approximately linearly, lower the freezing point. In the initial five cycles, the freezing point increases and then stabilizes. Besides, the degree of supercooling was calculated and its correlations with water, salt and freeze-thaw cycles were noted. Finally, an empirical equation was proposed for the relationship of freezing point and three main factors, i.e., water content, saline content and freeze-thaw cycles. Comparison of calculated and measured data proves that it is reliable and may provide guidance for the design and numerical analysis in frozen soil engineering.

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

Service Life Variation Considering Increasing Initial Chloride Content and Characteristics of Mix Proportions and Design Parameters (초기 염화물량의 증가와 배합 및 설계 변수 특성을 고려한 콘크리트 내구수명의 변동성)

  • Park, Sun-Kyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • It is very important for structure designer to understand the service life variation since a wide range of service life is evaluated with changing exposure conditions and design parameters. Recently, for zero-carbon, waste plastic has been used for fuel for clinker production and this yields increase in chloride content in cement. This study is for evaluation of changing service life in the concrete with increasing initial chloride content due to usage of plastic-SRF(Solid Refuse Fuel) considering various exposure conditions and design parameters. For this, 4 levels of initial chloride content were assumed, and the service life was assessed using LIFE 365 program considering various environmental conditions including 3 levels of surface chloride content. As for analysis parameters, critical/initial chloride content, blast furnace slag powder replacement ratio, W/B(Water to Binder) ratio, cover depth, and unit mass for binder are adopted. Service life decreases with increasing initial chloride content and a significant reduction of service life is not evaluated permitting up to 1,000ppm of initial chloride content. With increasing slag replacement ratio, a longer service life can be secured since blast furnace slag powder has the effect of reducing the diffusion of external chloride ions and fixing the free chloride. It is thought that increasing initial chloride content up to European standard is helpful for enhancing sustainability and reducing carbon emission. Though the reduction in service life due to an increase in the initial chloride content is not significant in slag-concrete with low surface chloride content, careful consideration for mixing design should be paid for the exposure environment with high surface chloride content.

Reduction of Deoxynivalenol in Barley by Chemical Treatments and Malting

  • Pei, Shi-Chun;Lee, Won-Jong;Kim, Suk-Shin
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.823-827
    • /
    • 2005
  • Fusarium mycotoxin deoxynivalenol (DON) contents and its critical quality parameters were analyzed using two-rowed, six-rowed, and hulless barleys. DON content in the two-rowed Korean barleys was lower than that in the six-rowed barleys. The average DON contents of six-rowed, two-rowed, and hulless barleys were 1.35 ppm, 0.36 ppm, and 0.49 ppm, respectively. The DON content was reduced by 6.2% by sieving, by 6.0% by washing with water and by 18.1-69.8% by treatment with aqueous chemical solutions. Of the reagents investigated, aqueous sodium bicarbonate gave the greatest reduction in the barley DON level. The DON content was reduced to 62.5% of initial level after 3 days of steeping and to 23.1% after 3 days of germination. DON was not detected after steeping barley for 24 hr in 0.1M $Na_2CO_3$ solution with 0.1 % activated carbon.

Resuspension Characteristics of Deposited Fine-Grained Sediments (미세퇴적물(微細堆積物)의 부상특성(浮上特性)에 관한 연구(硏究))

  • Kim, Cha-Kyum;Lee, Jong-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.221-229
    • /
    • 1992
  • A series of experiments on the resuspension of deposited fine-grained sediments were carried out in a recirculating straight flume to investigate the influence of the sediment type, water content and bed shear stress (${\tau}_b$) on the resuspension characteristics of the sediments. The sediments were sampled from Youngkwang coast and Youngdo coast which are located in the western sea and southeastern sea of Korea, respectively. Critical bed shear stress (${\tau}_c$) for resuspension was deduced for each experimental series. For the same sediment, critical bed shear stress for resuspension decreased but suspension mass or rate increased with increasing water content. The resuspension of deposited fine-grained sediments depended strongly on the water content, and the sediment type characterizing the inter-particle bond strength. It has been found that critical bed shear stress for resuspension in the unidirection flow is about 4 times higher than that in the combined wave-current flow, In case of lower bed shear stress, after an initially high suspension, suspension mass approaches a constant value due to the bed hardening with increasing time, but in case of higher bed shear stress, suspension mass increased successively due to the bed softening with time. Initial suspension rate, $E={\alpha}_3({\tau}_b/{\tau}_c-1)^{\beta}$ (where ${\alpha}_3$ and ${\beta}$=empirical constants), was estimated for each experimental series, ${\alpha}_3$ and ${\beta}$ values for the same sediment increased with water content.

  • PDF

The effect of seasonal water temperature on sedimentation characteristics of dredged clay (계절별 수온에 따른 점토의 침강압밀 특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1183-1189
    • /
    • 2009
  • The sedimentation rate of particles in a suspension is a function of particle size, initial slurry water content and salinity. Many researches conducted on the behavior of dredged soils have centered on such factors. However, there have been few attempts to assess another important influence factor of seasonal water temperature on designing the placement of dredged materials. In this paper, the effect of seasonal water temperature on sedimentation characteristics of dredged clay was investigated with consideration of three different water temperatures, that are $5^{\circ}C$, $15^{\circ}C$, $35^{\circ}C$, which represent critical water temperatures in winter, spring or fall, and summer, respectively. A series of experimental results reveal that the sedimentation rates for the water temperature of $15^{\circ}C$ and $35^{\circ}C$ are very similar each other, but that of $5^{\circ}C$ that represents a winter season leads to a considerably delayed sedimentation compared to the others. This may be attributable to the retardation of ion-leaching from clay particles at low water temperature.

  • PDF

Study on the Drying Characteristics of Wild Vegetables (산채의 건조 특성에 관한 연구)

  • Rhim, Jong-Whan;Hwang, Keum-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.358-364
    • /
    • 1995
  • In order to determine the moisture content level for safe storage of wild vegetables, drying characteristics and water vapor sorption characteristics of four vegetables, i.e., zucchini slice, sweet potato stem, taro stem, and platycodon, were investigated. The drying curves of these vegetables were consisted of three characteristic stages which were the initial settling down period, the constant drying rate period, and the falling drying rate period. And the falling rate period of the vegetables showed 2 or 3 parts of falling rate. All of the falling rate curves of the vegetables showed upwardly convex shape which is known as a characteristic pattern for the drying of fibrous food materials. The critical moisture contents of the vegetables were $8.29{\sim}9.75,\;10.40{\sim}15.08,\;9.51{\sim}14.52\;and\;3.29{\sim}3.56g\;H_2O/g$ dry solids for zucchini slice, sweet potato stem, taro stem, and platycodon, respectively. Activation energy values of drying rate during falling rate period were 2.30, 2.11, 4.97, and 2.80 kcal/mol for zucchini slice, sweet potato stem, taro stem, and platycodon respectively. The BET monolayer moisture contents of the vegetables were $10.05{\sim}13.59,\;9.49{\sim}12.69,\;9.50{\sim}16.48\;and\;5.01{\sim}5.44g\;H_2O/g$ dry solids for zucchini slice, sweet potato stem, taro stem, and platycodon, respectively. And these values were found to be very compatible with the values of the critical moisture content. Consequently, it was found that the moisture of these vegetables should be removed below the BET monolayer moisture content or below the critical moisture content for the long term storage.

  • PDF

Optimum LWA content in concrete based on k-value and physical-mechanical properties

  • Muda, Zakaria Che;Shafigh, Payam;Yousuf, Sumra;Mahyuddin, Norhayati Binti;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.215-225
    • /
    • 2022
  • Thermal comfort and energy conservation are critical issues in the building sector. Energy consumption in the building sector should be reduced whilst enhancing the thermal comfort of occupants. Concrete is the most widely used construction material in buildings. Its thermal conductivity (k-value) has a direct effect on thermal comfort perception. This study aims to find the optimum value of replacing the normal aggregate with lightweight expanded clay aggregate (LECA) under high strengths and low thermal conductivity, density and water absorption. The k-value of the LECA concrete and its physical and mechanical properties have varying correlations. Results indicate that the oven-dry density, compressive strength, splitting tensile strength and k-value of concrete decrease when normal coarse aggregates are replaced with LECA. However, water absorption (initial and final) increases. Thermal conductivity and the physical and mechanical properties have a strong correlation. The statistical optimisation of the experimental data shows that the 39% replacement of normal coarse aggregate by LECA is the optimum value for maximising the compressive and splitting tensile strengths whilst maintaining the k-value, density and water absorption at a minimum.