• Title/Summary/Keyword: Critical frequency band

Search Result 69, Processing Time 0.022 seconds

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Analysis and Improvement Specific Frequency Reception Noise Phenomena Due to RF Radiation Signal (RF 방사 신호로 인한 특정 주파수 수신 잡음 현상의 원인분석 및 개선)

  • Kwon, Jung-Hyuk;Kim, Jong-Min;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.73-83
    • /
    • 2022
  • The purpose of this paper was to identify a method to improve received noise in a specific frequency band, caused by RF radiation signals during aircraft operation. The communication equipment of the aircraft is critical to the performance and safety of the flight mission, as it is responsible for the function of internal and external communications. Noise-free, clean communication quality, as well as transmission and receiving functions have to be implemented. Thus, the cause analysis of the reception noise in a specific frequency band, was analyzed through trouble shooting. The receiving noise due to the RF radiation signal emitted from the subsystem unit inside the aircraft, was improved by shielding with a CAP with electroless nickel plating applied. Additionally, the measurement and verification results of the improvement method are also described.

Study on the Spectrum Sharing between IMT and FSS Systems Considering MIMO SDMA Interference Mitigation Technique in C Band (C 대역에서 MIMO SDMA 간섭경감기법을 고려한 IMT와 FSS 시스템간 주파수 공유 연구)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.587-595
    • /
    • 2010
  • Spectrum sharing between wireless systems becomes a critical issue clue to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis which means that harmful. interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, I propose the minimum separation distances as a sharing criterion of I/N=-10dB using the interference to noise ratio(I/N) received at the reference FSS earth station from IMT multiple base station. Especially, same results imply that I/N values can be greatly reduced with MMO SDMA interference mitigation technique of IMT base station so that FSS and IMT systems can co-exist in the sam e frequency with appropriate separation distance.

A Method to Improve Isolation for Passive RFID Applications (수동형 RFID 시스템 적용을 위한 Isolation 개선 방법)

  • Kim, Jae-Kwon;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.45-49
    • /
    • 2007
  • The isolation between transmitter and receiver has been a critical problem in a pulse-modulated RFID (Radio Frequency Identification) system where transmitter and receiver use the identical frequency. A method using a switch, a mixer, a BPF (band-pass filter), and an additional oscillator in the transmitter is proposed to improve the isolation between transmitter and receiver in an RFID system. The Proposed system up-converts the outgoing wave from a frequency different from the received signal and improves the isolation. The proposed method provided additional 20 dB improvement on the isolation.

Automatic Vowel Onset Point Detection Based on Auditory Frequency Response (청각 주파수 응답에 기반한 자동 모음 개시 지점 탐지)

  • Zang, Xian;Kim, Hag-Tae;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.333-342
    • /
    • 2012
  • This paper presents a vowel onset point (VOP) detection method based on the human auditory system. This method maps the "perceptual" frequency scale, i.e. Mel scale onto a linear acoustic frequency, and then establishes a series of Triangular Mel-weighted Filter Bank simulate the function of band pass filtering in human ear. This nonlinear critical-band filter bank helps greatly reduce the data dimensionality, and eliminate the effect of harmonic waves to make the formants more prominent in the nonlinear spaced Mel spectrum. The sum of mel spectrum peaks energy is extracted as feature for each frame, and the instinct at which the energy amplitude starts rising sharply is detected as VOP, by convolving with Gabor window. For the single-word database which contains 12 vowels articulated with different kinds of consonants, the experimental results showed a good average detection rate of 72.73%, higher than other vowel detection methods based on short-time energy and zero-crossing rate.

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

Low frequency critical bandwidths of Korean normal hearing adults (한국 정상 성인의 저주파수 임계 주파수 대역 특성에 관한 연구)

  • Moon, Jihyun;Jeon, Kyongeon;Lim, Dukhwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.70-75
    • /
    • 2022
  • The critical bandwidth represents response interactions with respect to a signal tone and their neighboring bands. This study was to analyze the critical bandwidths of a clinically important 500 Hz tone in Korean young male and female subjects (male = 10, female = 10) at a conversational level (60 dB HL). Data were measured with notched band noise and two alternative forced choice methods. Results showed that the critical bandwidth was slightly greater (95 Hz) than the previous Western measures. There were no statistically significant differences in gender, nor were there any significant differences in lateralization of the ear (p > 0.05). These results may have implications in optimizing effective tinnitus masking or the related clinical applications.

Frequency Dependence of Impedance of the Grounding Grid (접지그리드의 접지임피던스의 주파수 의존성)

  • 이복희;이동문;엄주홍;김교운
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.22-28
    • /
    • 2003
  • This paper describes the frequency dependence of the grounding impedance. In order to propose the evaluation method of the transient response of powered grounding systems, the grounding impedances were measured with varying the frequency of incoming currents by way of the variable frequency inverter and band pass filter. The magnitude and phase of the grounding impedance were analyzed in the frequency range of 20 [Hz]∼2.1[kHz]. The grounding impedance were increased with increasing the frequency of the test current. The grounding impedance at the frequency of 2[kHz] in the actual 22.9[kV] substation grounding system was approximately 3 times as large as the 60[Hz] grounding impedance. It was found that the frequency dependence of the grounding impedance is mainly subject to the inductive reactance of the grounding conductors. As a result, it is critical to determine the shape and size of grounding grid reducing the resultant inductance in grounding systems for lightning surge protection.

Analysis on the Minimum Separation Distance for Spectrum Sharing between IMT and FSS systems in C Band (C 대역에서 IMT와 FSS 시스템간 주파수 공유를 위한 최소 이격거리 분석)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.907-915
    • /
    • 2009
  • Spectrum sharing between wireless systems becomes a critical issue due to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis, which means that harmful interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, the minimum separation distances have been evaluated considering major factors such as the clutter loss in some areas and the elevation angle of FSS earth station, and using I/N=-10dB which is fundamental criterion for coexistence.

  • PDF

Design of Crooked Wire Antennas for UHF Band RFID Reader (UHF 대역 RFID 리더용 Crooked Wire 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.472-481
    • /
    • 2005
  • This paper reports the design of RFID reader antennas working in UHF band. The reader antennas were designed using a Pareto Genetic Algorithm(Pareto GA). Antennas were optimized to have circular polarization(CP) with less than 3 dB axial ratio, impedance matching with less than VSWR=2 within the frequency range of UHF, an adequate readable range, a restricted size(kr<2.22) considering the practical condition. After Pareto GA optimization, we selected and built the most suitable antenna design and compared the measured results to the simulations. Operating principle of the antenna was explained by investigating the amplitude and the phase of the induced current on the antenna body. We also researched the stability of the antenna with respect to the manufacturing error and studied the critical design parameters by applying the random error method on the antenna bent points.