• Title/Summary/Keyword: Critical face pressure

Search Result 25, Processing Time 0.022 seconds

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

On the Fracture Behaviour of the Concrete Gravity Dam Subjected to Water Pressure at the Crack Faces (균열면에 수압을 받는 중력식 콘크리트 댐의 파괴거동에 관한 연구)

  • 장희석
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.189-198
    • /
    • 1996
  • The fracture behaviour of concrete gravity dam mainly due to uplift pressure acting at the crack face was studied. Triangular type and parabolic type distribution of the uplift pressure including uniform type were first considered in case of calculating stress intensity factor(SIF) by the surface integral method. Second, the directions of crack propagation according to the uplift pressure distribution were pursued by FRANC(FRacture ANalysis Code). Third, critical crack lengths according to the uplift pressure distribution under the overflow depth were calculated. The SIF values obtained from the surface integral method were compared with those by FRANC and relatively good agrements could be obtained between both of them. And it could be seen that the direction of crack propagation in case of triangular pressure distribution was a little benter to the dam base than the one by the uniform type. Maximum critical crack lengths under the overflow depth were obtained at about 2/5-1/2 of the dam height.

  • PDF

The Characteristics and Risk Factors of Medical Device Related Pressure Injury in Intensive Care Unit Patients (중환자실 환자의 의료기기 관련 욕창 특성과 위험요인)

  • Jo, Mi Hyeon;Choi, Hye-Ran
    • Journal of Korean Critical Care Nursing
    • /
    • v.16 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • Purpose : This study aimed to investigate the characteristics and risk factors associated with pressure injuries related to medical devices among patients admitted to the intensive care unit (ICU). Method : A retrospective study analyzed data from 462 ICU patients. Statistical analyses, including independent t-tests, Fisher's exact tests, and logistic regression were performed to analyze the data. Results : Among the 154 subjects, there were a total of 198 medical device-related pressure injuries (MDRPI). Stage 2 and deep tissue pressure injuries were the most frequent. MDRPI occurred most frequently on the face, with nasogastric tubes being its leading cause, followed by endotracheal tubes. The risk factors for MDRPI included male sex (odds ratio [OR]=1.78, 95% confidence interval [CI]=1.12-2.83), department at the time of ICU admission (OR=4.29, 95% CI=2.01-9.15), post-surgery ICU admission (OR=0.43, 95% CI=0.25-0.73), application of extracorporeal membrane oxygenation machines (OR=2.72, 95% CI=1.06-6.95), number of medical devices (OR=1.16, 95% CI=1.05-1.30), inotropic drug administration (OR=2.33, 95% CI=1.19-4.60), and sedative use (OR=2.53, 95% CI=1.17-5.45). Conclusion : These results enable the determination of the characteristics and risk factors associated with MDRPI. It is crucial to acknowledge the risk factors for MDRPI in ICU patients and establish a prevention strategy.

Development of a Garlic Peeling System Using High-Pressure Water Jets (I) - Peeling tests with high-pressure plunger pumps and flat-spray nozzles - (습식 마늘박피 시스템 개발 (I) - 고압 플런저 펌프와 부채꼴 분사노즐을 이용한 박피 실험 -)

  • 양규원;배영환;백성기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • This research was conducted to test the feasibility of utilizing high-pressure water jets of over 1.0㎫ as a means of breaking and peeling garlic bulbs. High-pressure plunger pumps and flat-spray nozzles of varying orifice diameters and spray angles were utilized to supply water jets into a prototype peeling chamber made of transparent acrylic plates. Water jets were discharged from a total of six nozzles installed in such a way that three parallel nozzles face the other three. The cross-sectional area of the peeling chamber and the installation angle of the nozzles had critical effects on peeling performance. Small cross-sectional area was required so that total impact force of water jets on garlic could be increased. The optimum installation angles were around 4, 8, and 16$^{\circ}$ for the nozzles having 15, 40, and 65$^{\circ}$ spray angles, respectively. Best performance with 61.4% of completely-peeled garlics was obtained at a pressure of 1.94㎫ and a flow rate of 9.07 $\ell$/min for each nozzle. The peeling efficiency of the system was generally unsatisfactory due to the limited flow rate of the plunger pumps utilized. For better performance, it is recommended to increase flow rate while reducing operating pressure by utilizing other type of pumps.

Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT

  • Mohammadimehr, Mehdi;Rostami, Rasoul;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.513-543
    • /
    • 2016
  • Third order shear deformation theory is used to evaluate electro-elastic solution of a sandwich plate with considering functionally graded (FG) core and composite face sheets made of piezoelectric layers. The plate is resting on the Pasternak foundation and subjected to normal pressure. Short circuited condition is applied on the top and bottom of piezoelectric layers. The governing differential equations of the system can be derived using Hamilton's principle and Maxwell's equation. The Navier's type solution for a sandwich rectangular thick plate with all edges simply supported is used. The numerical results are presented in terms of varying the parameters of the problem such as two elastic foundation parameters, thickness ratio ($h_p/2h$), and power law index on the dimensionless deflection, critical buckling load, electric potential function, and the natural frequency of sandwich rectangular thick plate. The results show that the dimensionless natural frequency and critical buckling load diminish with an increase in the power law index, and vice versa for dimensionless deflection and electrical potential function, because of the sandwich thick plate with considering FG core becomes more flexible; while these results are reverse for thickness ratio.

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

Continuous Positive Airway Pressure during Bronchoalveolar Lavage in Patients with Severe Hypoxemia (심한 저산소혈증 환자에서 기관지폐포세척술 시 안면마스크를 이용한 지속성 기도양압의 유용성)

  • An, Chang Hyeok;Lim, Sung Yong;Suh, Gee Young;Park, Gye Young;Park, Jung Woong;Jeong, Seong Hwan;Lim, Si Young;Oui, Misook;Koh, Won-Jung;Chung, Man Pyo;Kim, Hojoong;Kwon, O Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • Background : A bronchoalveolar lavage(BAL) is useful in diagnosing the etiology of bilateral pulmonary infiltrations, but may worsen the oxygenation and clinical status in severely hypoxemic patients. This study assessed the safety and efficacy of the continuous positive airway pressure(CPAP) using a conventional mechanical ventilator via a face mask as a tool for maintaining the oxygenation level during BAL. Methods : Seven consecutive patients with the bilateral pulmonary infiltrates and severe hypoxemia ($PaO_2/FIO_2$ ratio ${\leq}200$ on oxygen 10 L/min via mask with reservoir bag) were enrolled. The CPAP 5-6 $cmH_2O(F_IO_2\;1.0)$ was delivered through an inflatable face mask using a conventional mechanical ventilator. The CPAP began 10 min before starting the BAL and continued for 30 min after the procedure was completed. A bronchoscope was passed through a T-adapter and advanced through the mouth. BAL was performed using the conventional method. The vital signs, pulse oxymetry values, and arterial blood gases were monitored during the study. Results : (1) Median age was 56 years(male:female=4:3). (2) The baseline $PaO_2$ was $78{\pm}16mmHg$, which increased significantly to $269{\pm}116mmHg$(p=0.018) with CPAP. After the BAL, the $PaO_2$ did not decrease significantly but returned to the baseline level after the CPAP was discontinued. The $SpO_2$ showed a similar trend with the $PaO_2$ and did not decrease to below 90 % during the duration of the study. (3) The $PaCO_2$ increased and the pH decreased significantly after the BAL but returned to the baseline level within 30 min after the BAL. (5) No complications directly related to the BAL procedure were encountered. However, intubation was necessary in 3 patients(43 %) due to the progression of the underlying diseases. Conclusion : In severe hypoxemic patients, CPAP using a face mask and conventional mechanical ventilator during a BAL might allow minimal alterations in oxygenation and prevent subsequent respiratory failure.

Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model

  • Chen, Liang;Yu, Liang;Ou, Jianchun;Zhou, Yinbo;Fu, Jiangwei;Wang, Fei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.73-82
    • /
    • 2020
  • With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA - based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk.

Preoperative risk evaluation and perioperative management of patients with obstructive sleep apnea: a narrative review

  • Eunhye Bae
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.4
    • /
    • pp.179-192
    • /
    • 2023
  • Obstructive sleep apnea (OSA) is a common sleep-breathing disorder associated with significant comorbidities and perioperative complications. This narrative review is aimed at comprehensively overviewing preoperative risk evaluation and perioperative management strategies for patients with OSA. OSA is characterized by recurrent episodes of upper airway obstruction during sleep leading to hypoxemia and arousal. Anatomical features, such as upper airway narrowing and obesity, contribute to the development of OSA. OSA can be diagnosed based on polysomnography findings, and positive airway pressure therapy is the mainstay of treatment. However, alternative therapies, such as oral appliances or upper airway surgery, can be considered for patients with intolerance. Patients with OSA face perioperative challenges due to difficult airway management, comorbidities, and effects of sedatives and analgesics. Anatomical changes, reduced upper airway muscle tone, and obesity increase the risks of airway obstruction, and difficulties in intubation and mask ventilation. OSA-related comorbidities, such as cardiovascular and respiratory disorders, further increase perioperative risks. Sedatives and opioids can exacerbate respiratory depression and compromise airway patency. Therefore, careful consideration of alternative pain management options is necessary. Although the association between OSA and postoperative mortality remains controversial, concerns exist regarding adverse outcomes in patients with OSA. Understanding the pathophysiology of OSA, implementing appropriate preoperative evaluations, and tailoring perioperative management strategies are vital to ensure patient safety and optimize surgical outcomes.

Damage rate assessment of cantilever RC walls with backfill soil using coupled Lagrangian-Eulerian simulation

  • Javad Tahamtan;Majid Gholhaki;Iman Najjarbashi;Abdullah Hossaini;Hamid Pirmoghan
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.231-245
    • /
    • 2024
  • In recent decades, the protection and vulnerability of civil structures under explosion loads became a critical issue in terms of security, which may cause loss of lives and structural damage. Concrete retaining walls also restrict soils and slopes from displacements; meanwhile, intensive temporary loading may cause massive damage. In the current study, the modified Johnson-Holmquist (also known as J-H2) material model is implemented for concrete materials to model damages into the ABAQUS through user-subroutines to predict the blasting-induced concrete damages and volume strains. For this purpose, a 3D finite-element model of the concrete retaining wall was conducted in coupled Eulerian-Lagrangian simulation. Subsequently, a blast load equal to 500 kg of TNT was considered in three different positions due to UFC 3-340-02. Influences of the critical parameters in smooth blastings, such as distance from a free face, position, and effective blasting time, on concrete damage rate and destroy patterns, are explored. According to the simulation results, the concrete penetration pattern at the same distance is significantly influenced by the density of the progress environment. The result reveals that the progress of waves and the intensity of damages in free-air blasting is entirely different from those that progress in a dense surrounding atmosphere such as soil. Half-damaged elements in air blasts are more than those of embedded explosions, but dense environments such as soil impose much more pressure in a limited zone and cause more destruction in retaining walls.