• Title/Summary/Keyword: Critical depth of cut

Search Result 24, Processing Time 0.029 seconds

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.

A Study on the Critical Depth of Cut in Ultra-precision Machining (초정밀 절삭에 있어서 임계절삭깊이에 대한 연구)

  • Kim, Kug-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.126-133
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a few nanometer. In such case, a basic understanding of the mechanism on the micro-machining process is is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

A Study on Critical Cutting Depth in Micro-Machining (마이크로 가공에서의 한계절삭깊이에 관한 연구)

  • 손성민;이희석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-983
    • /
    • 2002
  • In micro-machining, diamond tool is commonly used because it brings much better micro-machinability due to its edge sharpness. However, it is a big question even how thinly the sharp edge of a diamond tool can cut a ship from the workpiece surface. This paper is to investigate the critical cutting depth, at which the dominant cutting mode changes from chip formation to burnishing or vice versa, for a given edge radius. The theoretically critical cutting depth is 0.25$\mu\textrm{m}$(0.8$\mu\textrm{m}$) in cutting using a square type(V-type) diamond tool that has edge radius of 1$\mu\textrm{m}$(1.5$\mu\textrm{m}$). Experimentally, the dominant cutting mode changes and cutting surface becomes better at critical cutting depth. To get high quality surface, depth of cut must be critical cutting depth because less plastically deformed substrate is left on the surface.

  • PDF

A study of the Modeling of Paramenters in End-Mill System (End - Mill 절삭계의 파라메터 모델링에 관한 연구)

  • 백대균;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.173-178
    • /
    • 1995
  • This paper presents a new method to obtain parameters of end-mill cutting system. For high speed milling and precision surface finish, we have to predict the deflection of tool and the critical depth of cut. The cutting system can be modeled to a vibratory system to obtain the deflection of tooll and the critical depth of cut. A new method of the modeling of one degree of freedom system was developed using bisection method, ARMA(Autoregressive Moving average) and impact test.

  • PDF

Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration (강우침투에 따른 화강풍화토 사면의 얕은파괴 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2810-2818
    • /
    • 2009
  • In order to examine the characteristic of shallow failure in cut slopes composed of weathered granite soil, this study calculated critical permeability coefficient according to rainfall characteristic in Korea, performed stability analysis according to the representative physical properties of weathered granite soil distributed in Korea such as horizontal distance to the failure surface of cut slope, slope inclination, slope height, and the depth of wetting by rainfall, and analyzed the results. In the results of analyzing critical permeability coefficient, when the local rainfall characteristic was considered, the maximum critical permeability coefficient was $7.16{\times}10^{-4}cm/sec$. We judged that shallow failure according to wetting depth should be considered when rainfall below the critical rainfall intensity lasts longer than the minimum rainfall duration in cut slopes composed of weathered granite soil, which had a critical permeability coefficient lower than the maximum critical permeability coefficient. Furthermore, using simulated failure surface, this study could understand the characteristic of shallow failure in cut slopes based on the change in slope safety factor according to horizontal distance, wetting depth, and strength parameter.

Efffct of Material Removal per Tooth on the Circumferential Shape of Cylindrically Milled Parts (공구날당 소재제거량이 원통형 밀링가공물의 원주형상에 미치는 영향)

  • Kim Kwang Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.62-66
    • /
    • 2004
  • A study for investigating the effects of the cutting conditions(feed rate, radial depth of cut, cutting speed) and the tool diameter on the circumferential geometry of the cyl indrically end-mi1led workpiece is described. In this work, the circumferential geometry is characterized by the roundness error. Experimental results show that the circumferential geometry is directly affected by the material removal per tooth,which is defined as a function of the cutting speed, the feed rate and the radial depth of cut. And, the radial depth of cut is revealed to be the most critical condition among them. It is also found that the roundness error decreases when the tool diameter is larger under the same cutting conditions.

Vibration Analysis of a Lathe Performing Non-Circular Cutting (비원형 단면의 선삭 가공시 발생하는 진동해석)

  • 신응수;박정호
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

A Finite Element Analysis of the Stagnation Point on the Tool Edge (공구끝단에서의 정체점에 관한 유한요소해석)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.901-904
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a flew manometer. In such case, a basic understanding of the mechanism on the micro-machining process is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

  • PDF

A study of burr formation on microgrooving for fresnel lens mould (프레넬렌즈 금형용 미세홈 가공에 있어서 버 발생 경향에 관한 연구)

  • 임한석;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.28-34
    • /
    • 1997
  • The side burrs and shape distortion resulting from the micromachining of an array of V-shape microgrooves in fresnel lens mould were experimentally invesigated. The focus of this study is on the influence of depth of cut and prism angle on the burr growing rate. The main experiments were con- ducted on the single prism cutting for the convinient of measuring the burr shape and cutting force. From the observation of the burr shape and burr growing rate, it was found that there exits a critical depth of cut below which the burrs are more or less irregular and weak. But above that critical value, the burrs are re- latively clear and stiff.

  • PDF