• Title/Summary/Keyword: Critical cooling rate

Search Result 80, Processing Time 0.028 seconds

Study on Correlation of Critical Heat Flux in Spray Cooling (분무냉각에 있어서 임계열유속 상관식에 관한 연구)

  • Kim, Yeung Chan
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.109-113
    • /
    • 2018
  • The critical heat flux of spray cooling were measured on the test surface of 10 mm diameter made by stainless steel. The experiments were carried out for the droplet-flow-rate of $0.00002{\sim}0.003m^3/(m^2s)$ and liquid subcooling temperature of $40{\sim}75^{\circ}C$. Experimental results showed that the critical heat flux of spray cooling increased remarkably with the increase of droplet-flow-rate. Meanwhile, the effect of liquid subcooling on critical heat flux of spray cooling appeared weakly under the present experimental conditions. In additions, correlation between the dimensionless critical heat flux and Weber number based on droplet-floe-rate was developed for experimental results.

A Study on the critical cooling rate to avoid carbide precipitation in austenitic manganese steels during quenching (고망간 주강품의 열처리시 탄화물 석출방지를 위한 임계 냉각속도에 관한 연구)

  • Kim, Jeong-Tae;Kwahk, Si-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.206-214
    • /
    • 1999
  • The effect of cooling rate on carbide precipitation during quenching of austenitic manganese steel was investigated by optical microscopy, image analyzer and numerical analysis. A computer program based on the finite difference method for analyzing heat treatment processes was developed in order to evaluate cooling rates and the possibility of carbide precipitation during quenching. The area ratio of carbide precipitated in the austenite matrix was measured by the image analyzer, and used to determine the critical point of carbide precipitation. Temperature-dependent critical cooling rates at the critical points were calculated using the present simulation program, The calculated results showed a good agreement with the experimental ones.

  • PDF

Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics ($Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향)

  • 한봉석;이홍림;전명철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

The improvement of genetic algorithm using Boltzmann selection (유전자 알고리즘에서 볼쯔만 선택방법의 개선)

  • 윤기석;김태형;김유신
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.429-432
    • /
    • 1999
  • In this paper, we propose a method to improve Genetic Algorithm using Boltzmann selection which Michael has suggested. But Michael uses temperature schedule(the initial temperature, the cooling rate), which can be applicable only to the limited range of problems. We propose a new method to find the critical temperature and the cooling rate as parameters of the temperature schedule. The critical temperature can be derived from the distribution of each individual's fitness. Through the application of the island model where each island has differing cooling rate, it is proved that it is unnecessary to find the optimal cooling rate. The simulation on the TSP's with various city sizes proves the proposed critical temperature correct.

  • PDF

Effect of W Addition on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 W 첨가의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.

Development of the hybrid desiccant cooling dryer (하이브리드 냉풍건조기 개발)

  • Choi, Hyun-Woong;Chung, Kwang-Seop;Lee, Tae-Ho;Park, Seung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.236-241
    • /
    • 2009
  • After analyzing the characteristics of the cooling dryer, the mixed cooling dryer was developed by adding the desiccant dryer which supplement the cooling dryer's demerits. Also, the hybrid desiccant cooling dryer was developed to use effectively the exhaust heat energy of the cooling dryer. It could make a more that 20 percent reduction in energy compared with the mixed desiccant cooling dryer. It has become essential to supply this equipment and search the suitable drying product.

  • PDF

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags (결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향)

  • Kim, Yu-Na;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

Effect of Critical Cooling Rate on the Formation of Intermetallic Phase During Rapid Solidification of FeNbHfBPC Alloy

  • Kim, Song-Yi;Oh, Hye-Ryeong;Lee, A-Young;Jang, Haneul;Lee, Seok-Jae;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.235-240
    • /
    • 2021
  • We present the effect of the critical cooling rate during rapid solidification on the nucleation of precipitates in an Fe75B13P5Nb2Hf1C4 (at.%) alloy. The thermophysical properties of the rapidly solidified Fe75B13P5Nb2Hf1C4 liquids, which were obtained at various cooling rates with various sizes of gas-atomized powder during a high-pressure inert gas-atomization process, were evaluated. The cooling rate of the small-particle powder (≤20 ㎛) was 8.4×105 K/s, which was 13.5 times faster than that of the large-particle powder (20 to 45 mm; 6.2×104 K/s) under an atomized temperature. A thermodynamic calculation model used to predict the nucleation of the precipitates was confirmed by the microstructural observation of MC-type carbide in the Fe75B13P5Nb2Hf1C4 alloy. The primary carbide phase was only formed in the large-particle gas-atomized powder obtained during solidification at a slow cooling rate compared to that of the small-particle powder.

Effect of Critical Cooling Rate for Minimization of Porosity in the Thick Aluminum Casting (후육 Al 주조재의 기포결함 최소화를 위한 임계냉각속도의 영향)

  • Kwak, Si-Young;Cho, In-Sung;Kim, Yong-Hyun;Lee, Hee-Kwon
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.181-185
    • /
    • 2017
  • In the present study, the effect of cooling rate on the formation of the porosity in the thick aluminum sand casting was investigated. Nowadays, due to considerations of weight and cost reduction, large scale thick aluminum casting has replaces steel frames for vacuum chambers for semiconductor production. Several thick aluminum castings were manufactured using chill with temperature measurements. The castings were inspected using 3D computed tomography in order to quantify the porosity defect density in the castings. Effects of the thickness of the chill on the porosity defect density were discussed.