• Title/Summary/Keyword: Critical control systems

Search Result 713, Processing Time 0.027 seconds

Performance Analysis of Multirate LQG Control (멀티레이트 LQG 제어 기법의 성능 비교 분석)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one period, the time-varying system equation can be constructed into the time-invariant equation. The two multirate formulations have some trade-offs in the simplicity to construct the controller, the control performance. It is good issue to determine the suitable formulation in consideration of performance of them. In this paper, the two categories of multirate formulations will be compared in terms of the linear quadratic (LQ) cost function. The results are used to select the multirate formulation and the sampling rates suitable to the desired control performance.

  • PDF

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

Cyber Threat and a Mitigation Method for the Power Systems in the Smart Grid

  • Kim, Myongsoo;Kim, Younghyun;Jeon, Kyungseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1043-1050
    • /
    • 2014
  • Obsolescent control systems for power systems are evolving into intelligent systems and connecting with smart devices to give intelligence to the power systems. As networks of the control system are growing, vulnerability is also increasing. The communication network of distribution areas in the power system connects closely to vulnerable environments. Many cyber-attacks have been founded in the power system, and they could be more critical as the power system becomes more intelligent. From these environment, new communication network architecture and mitigation method against cyber-attacks are needed. Availability and Fault Tree analysis used to show that the proposed system enhances performance of current control systems.

Introduction of Requirements and Regulatory Guide on Cyber Security of I&C Systems in Nuclear Facilities (원전 계측제어시스템의 사이버보안 요구사항)

  • Kang, Young-Doo;Jeong, Choong-Heui;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.209-210
    • /
    • 2008
  • In the case of unauthorized individuals, systems and entities or process threatening the instrumentation and control systems of nuclear facilities using the intrinsic vulnerabilities of digital based technologies, those systems may lose their own required functions. The loss of required functions of the critical systems of nuclear facilities may seriously affect the safety of nuclear facilities. Consequently, digital instrumentation and control systems, which perform functions important to safety, should be designed and operated to respond to cyber threats capitalizing on the vulnerabilities of digital based technologies. To make it possible, the developers and licensees of nuclear facilities should perform appropriate cyber security program throughout the whole life cycle of digital instrumentation and control systems. Under the goal of securing the safety of nuclear facilities, this paper presents the KINS' regulatory position on cyber security program to remove the cyber threats that exploit the vulnerabilities of digital instrumentation and control systems and to mitigate the effect of such threats. Presented regulatory position includes establishing the cyber security policy and plan, analyzing and classifying the cyber threats and cyber security assessment of digital instrumentation and control systems.

  • PDF

Analysis of Interoperability Test between a Different Kind of Train Control System (이종(異種) 열차제어시스템간의 상호운영성 시험 분석)

  • Baek, Jong Hyen;Seul, Nam-O
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.122-126
    • /
    • 2011
  • In this paper, for the purpose of improving the future domestic train control systems and securing interoperability according to the global development trends of train control systems, we present the test results of interoperability between wayside train control system installed in existed line, and the onboard train control system. Due to the safety-critical characteristics of train systems, the site test in the section where the wayside equipment is installed, leads to a danger against safety. Therefore, by way of constructing a simulation environment of train control systems, we confirm the T/R data systems of the equipment for interoperability and test the interoperability by applying these systems to onboard equipment.

Vibration Control of Flexible Rotor Systems Using an Electro-rheological Fluid Damper (ER 유체 감쇠기를 이용한 유연 회전축 계의 진동제어)

  • Lim, Seung-Chul;Chae, Jeong-Jae;Park, Sang-Min;Yun, Eun-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.365-373
    • /
    • 2002
  • This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.

Multirate LQG Control Based on the State Expansion (상태 공간 확장에 의한 멀티레이트 LQG 제어)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one Period, the time-varying system equation can be constructed into the time-invariant equation. In this paper, an alternative time-invariant model is proposed, the design method and the stability of the LQG (Linear Quadratic Gaussian) control scheme for the realization are presented. The realization is flexible to construct to the sampling rate variations, the closed-loop system is shown to be asymptotically stable even in the inter-sampling intervals and it has smaller computation in on-line control loop than the previous time-invariant realizations.

  • PDF

The Analysis of Formal Methods for Applying to Vital S/W in Train Control Systems (열차제어시스템 바이탈 소프트웨어를 위한 정형기법 적용 방안 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Yoon, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1000-1007
    • /
    • 2007
  • Recently, many critical control systems are developed using formal methods. When software applied to such systems is developed, the employment of formal methods in the software requirements specification and verification will provide increased assurance for such applications. Earlier error of overlooked requirement specification can be detected using formal specification method. Also the testing and full verification to examine all reachable states using model checking to undertake formal verification are able to be completed. In the comparison of other formal specification methods, we choose the Z formal language for applying to the train control system. Using Z is able to realize higher correctness in the requirement specification, and we propose the Statemate of the best solution in formal verification tools for the system modeling and verification. The Statemate makes it possible to prove thoroughly the system execution from the simple graphical modeling of the complicated train control system. Then we can expect that the model-based formal method combining Z with Statemate will be utilized widely for the railway systems due to various strong points.

  • PDF

ASIC for Ethernet based real_time communication in DCS

  • Nakajima, Takeshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1836-1839
    • /
    • 2005
  • We have developed Ethernet based real-time communication systems called "Vnet/IP" for DCS which is the control system for process automation. This paper describes the features and the technologies of the ASIC which is utilized in the communication interface hardware for Vnet/IP. Vnet/IP has been developed for mission-critical communications. Hence it has real-time feature, high reliability and precise time synchronization capability. At the same time, it is able to deal with standard protocols without influence on mission-critical communications. The communication interface hardware has a host interface and dual redundant network interfaces. The host interface can be chosen PCI-bus or R-bus which is the proprietary internal bus developed for the high reliable redundant controller. Each network interface is a RJ45 connection with 1Gbps maximum in compliance with IEEE802.3.

  • PDF

Throughput Analysis for Dual Blade Robot Cluster Tool (듀얼블레이드 로봇 클러스터툴의 생산성 분석)

  • Ryu, Sun-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1240-1245
    • /
    • 2009
  • The throughput characteristics of the cluster tool with dual blade robot are analyzed. Using equipment's cycle time chart of the equipment, simple analytic form of the throughput is derived. Then, several important throughput characteristics are analyzed by the throughput formula. First, utilization of the process chamber and the robot are maximized by assigning the equipment to the process whose processing time is near the critical process time. Second, rule for selecting optimal number of process chambers is suggested. It is desirable to select a single process chamber plus a single robot structure for relatively short time process and multi process chambers plus a single robot, namely cluster tool for relatively long time process. Third, throughput variation between equipments due to the wafer transfer time variation is analyzed, especially for the process whose processing time is less than critical process time. And the throughput and the wafer transfer time of the equipments in our fabrication line are measured and compared to the analysis.