• 제목/요약/키워드: Critical characteristics

검색결과 4,074건 처리시간 0.031초

고온초전도 선재의 과전류 통전 특성 (Over critical current characteristics of HTS tapes)

  • 임성우;황시돌;최용선;최효상;현옥배;유재무
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2002
  • We investigated over critical current characteristics of HTS tapes fabricated by KIMM. The critical current (Ic) of the HTS tapes was 68A/cm. In order to acquire over current I-V characteristics of HTS tapes, we applied AC that is 2-7 times of Ic to these tapes. When applied AC whose peak value is twice of Ic, we found out that total resistance of HTS tapes aid not change. In case of 3 times of Ic, resistances of HTS tapes began to increase slowly. However, superconducting regions of them were maintained stably in this condition. In addition, 280 $A_{peak}$was applied, superconducting regions began to be decreased gradually. Finally, 0.62m$\Omega$ of resistance was measured in HTS tapes which was applied AC correspond to 7 times of Ic at first cycle.

  • PDF

2중관형 2상 열사이폰의 한계열유속 특성에 관한 연구 (A Study on Critical Heat Elux Characteristics in a Two-Phase Concentric-Tube Thermosyphon)

  • 김욱
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1419-1426
    • /
    • 2002
  • An experimental study was made to elucidate critical heat flux(CHF) characteristics in a two-phase concentric-tube thermosyphon. The experiment was performed by using saturated water, over the experimental range of configuration: inner diameter of heated outer tube D=12mm, outer diameter of unheated inner tube do=3 to 10mm and heated tube length L=100 to 1000mm. The experiment shows that the CHF is enhanced with increase in the inner tube diameter, and that the CHF decreases beyond a certain diameter of the inner tube. There is an optimum diameter for inner tube that maximizes the CHF, for each tube length and test liquid. The CHF maximum is about two to eight times as large as that without an inner tube. For a large inner tube, the CHF characteristics is similar to that for natural convective boiling in a vertical annular tube.

Evaluation of Critical Current Density of FeAs-based Superconductors

  • Otabe, Edmund S.;Kiuchi, Masaru;Matsushita, Teruo;Ni, Baorong;Qi, Yanpeng;Wang, Lei;Gao, Zhaoshun;Wang, Dongliang;Zhang, Xianping;Ma, Yanwei;Nakajima, Yasuyuki;Tamegai, Tsuyoshi
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.1-7
    • /
    • 2012
  • In this review paper, we report the characteristics of the critical current density in FeAs based superconductors which is newly discovered by Hosono group of Tokyo Institute of Technology on 2008. Since the many specimens in present stage are not single crystals, there are two kinds of critical current density observed in the specimens which are so-called local and global critical current densities. Therefore, it is necessary to evaluate both kinds of critical current densities. The history effect in which the global critical current density shows different values in increasing and decreasing magnetic field is also observed when the specimens have the local and the global critical current densities. The wire which critical current is 180 A is successfully developed with using the knowledge of abovementioned characteristics of two kinds of critical current densities and the history effect.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems

  • Cheon, Gill-Jeong;Park, Robert G. er
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.606-621
    • /
    • 2004
  • A dynamic analysis using a hybrid finite element method was performed to characterize the effects of a number of manufacturing errors on bearing forces and critical tooth stress in the elements of a planetary gear system. Some tolerance control guidelines for managing bearing forces and critical stress are deduced from the results. The carrier indexing error for the planet assembly and planet runout error are the most critical factors in reducing the planet bearing force and maximizing load sharing, as well as in reducing the critical stress.

전형적 인식 상황과 결정적 예의 특징: 힘과 역학적 에너지 전환에 대한 중등학생의 생각을 중심으로 (The Characteristics of Typically Perceived Situations (TPSs) and Critical Examples: Focusing on Secondary Students' Ideas of Force and Mechanical Energy Conversion)

  • 강태욱;정용재;송진웅
    • 한국과학교육학회지
    • /
    • 제28권6호
    • /
    • pp.579-591
    • /
    • 2008
  • 학생의 선개념을 상황과 함께 파악하려는 시도로서 최근에 전형적 인식 상황(TPS)에 대한 연구와 결정적 예에 대한 연구가 수행되었다. TPS는 개념에 대해 생각할 때 가장 먼저 떠오르는 상황이며, 결정적 예는 학습에 가장 큰 도움이 된 예시 상황이다. 우리는 전형적 인식 상황과 결정적 예를 함께 파악함으로써 학생의 개념 이해 과정에서 상황이 어떻게 관련되는 지를 살펴볼 수 있다. 본 연구에서는 설문 조사와 면담을 통해 $9{\sim}11$학년 학생이 '힘'과 '역학적 에너지 전환'에 대해 가지고 있는 전형적 인식 상황과 결정적 예의 특징을 분석하고 그 관련성을 알아보고자 하였다. 연구 결과, 학생들의 전형적 인식 상황과 결정적 예는 개념에 따라 다른 특징을 보였다. 일상 생활과 깊이 관련되어 있는 힘의 경우에는 학생들이 다양한 상황을 TPS와 결정적 예로 가지고 있었다. 반면, 역학적 에너지 전환에 대해서는 공이 떨어지는 것과 같은 몇몇 상황을 전형적 인식 상황과 결정적 예로 가지고 있는 학생들이 많았다. 또, 학생들은 교과서와 일상생활에서 자주 접하는 상황이나 쉽게 이해할 수 있는 상황을 TPS나 결정적 예로 생각하는 경향이 있었다. 이상의 논의에서 TPS에서 시작하여 개념을 도입하고 이후 개념의 속성이 잘 드러나는 결정적 예를 제시하여 학습이 일어날 수 있도록 하는 것이 효과적인 과학 개념의 교수-학습 방안으로 보인다.

정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구 (I);입출구 압력비 변화 영향 (Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (I);Influence of the Inlet-Outlet Pressure Ratio)

  • 신창훈;하종만;이철구;허재영;임지현;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1448-1453
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. Especially, as there is not enough information to obtain reliable physical property values such as density, temperature etc. at the downstream of the pressure regulator, It is hard to calculate accurate solution in the pipeline network analysis. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done and the detail examinations and considerations of the pressure regulator as a pipeline network elements according to the variations of the inlet-outlet pressure ratio have been carried. Finally the flow-flied distributions, relations and critical-flow-characteristics have been studied. in detail and the 1D analytic method to analyze critical pipe flow have been investigated

  • PDF

정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구(II);단면적 및 개도 변화 (Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (II);Influence of the Cross-Sectional-Area and Opening Ratio)

  • 신창훈;하종만;이철구;허재영;임지현;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1454-1459
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. When it is under working, the accurate analysis of the flow properties is so difficult. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done according to the variations of the opening ratio or cross-sectional area and the detail examinations and considerations of the pressure regulator as a pipeline network elements have been carried. Finally the flow-flied distributions and critical-flow-characteristics have been presented in detail and the critical flow phenomena and the relation to the opening ratio or cross-sectional-area ratio have been studied.

  • PDF

용융온도와 유지시간이 용융법으로 제작한 고온초전도체의 임계특성에 미치는 영향 (The Effects of Melting Temperature and Holding Time on Critical Characteristics of HTSC Fabricated by Melting Method)

  • 임성훈;한태희;박경국;임성우;조동언;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제11권2호
    • /
    • pp.154-161
    • /
    • 1998
  • The effects of melting temperature and holding time on the critical current density($J_c$) of $YBa_2Cu_3O_x$ based superconducting bulk fabricated by MPMG process were investigated. The amount of the formed $Y_2BaCuO_5$ phases increased with the melting temperature. However, the value of critical current density was highest at 1120 $^{\circ}C$. With this proper melting temperature, the effect of holding time on the critical characteristics was also investigated. In the case of Ag addition, the volume of the formed $Y_2BaCuO_5$ phase when the amount of Ag addition was 10 wt% and 20 wt% was observed to be highest at 20 minute and 40 minute respectively. But in the specimen without Ag, volume of $Y_2BaCuO_5$ phase increased as the holding time increased. The proper melting temperature and the holding time obtained were 1120 $^{\circ}C$ and 20 minute. The long holding time was not effective for the $J_c$ improvement as well as the formation of $Y_2BaCuO_5$.

  • PDF

Modeling Of Critical Flux Conditions In Crossflow Microfiltration

  • Kim, Su-han;Park, Hee-kyung
    • Water Engineering Research
    • /
    • 제1권2호
    • /
    • pp.119-127
    • /
    • 2000
  • In the process of crossflow microfiltration, a deposit of cake layer tends to form on the membrane, which usually controls the performance of filtration. It is found, however, that there exist a condition under which no deposit of cake layer is made. This condition is called the sub-critical flux condition, and the critical flux here means a flux below which a decline of flux with time due to the deposit of cake layer does not occur. In order to study the characteristics of the critical flux, a numerical model is developed to predict the critical flux condition, and is verified with experimental results. For development of the model, the concept of effective particle diameter is introduced to find a representative size of various particles in relation to diffusive properties of particles. The model is found to be in good match with the experimental results. The findings from the use of the model include that the critical flux condition is determined by the effective particle diameter and the ratio of initial permeate flux to crossflow velocity.

  • PDF