• Title/Summary/Keyword: Critical Moving Speed

Search Result 69, Processing Time 0.027 seconds

Three-dimensional finite element analysis of the interference of adjacent moving trains resting on a ballasted railway track system

  • Marwah Abbas Hadi;Saif Alzabeebee;Suraparb Keawsawasvong
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.483-494
    • /
    • 2023
  • High-speed trains became common nowadays due to the need for fast and safe mean to transport goods and people. However, the use of high-speed trains necessitates the examination of the critical speed, which is the train speed at which the maximum settlement of the railway track occurs. The critical speed and railway track settlement have been investigated considering only one train in previous studies. However, it is normal to have two adjacent trains moving at the same time. This paper aims to understand how the interference of two moving trains affects the settlement and critical speed of ballasted railway track. Calibrated three-dimensional finite element models of railway track subjected to one moving train and two moving trains have been developed to address the aim of the study. It is found that the interference dramatically increases the railway track settlement with a percentage increase ranges between 5 and 100%. It is also found that the percentage increase of the railway track settlement depends on the train speed and the distance between the moving trains. In addition, it is found that the thickness of the ballast layer and the stiffness of the subgrade have minor influence on the percentage increase of the settlement. Importantly, the results of this paper illustrate the importance of the interference of the moving trains on the dynamic response of the railway track. Thus, there is a need to consider the dynamic interaction between the adjacent moving trains in the design of railway track foundation.

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

Dynamic Characteristics of the Beam Axially Moving Over Multiple Elastic Supports (다수의 탄성지지대 위를 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

Dynamic Characteristics of the Beam Axially Moving over Multiple Elastic Supports (다수의 탄성지지대 위를 축방향으로 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.125-130
    • /
    • 2002
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

  • PDF

Soil and Slab Track Interaction (지반과 슬래브궤도의 상호작용)

  • Kang, Bo-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.338.1-338
    • /
    • 2002
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. (omitted)

  • PDF

NUMERICAL ANALYSIS OF FLOW AROUND A SUBMERGED BODY NEAR A PYCNOCLINE USING THE GHOST FLUID METHOD ON UNSTRUCTURED GRIDS (비정렬 격자에서 Ghost Fluid 법을 이용한 밀도약층 주위 수중운동체에 의한 유동 해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.70-76
    • /
    • 2005
  • A two-layer incompressible time-accurate Euler solver is applied to analyze flow fields around a submerged body moving at a critical speed near a pycnocline. Discontinuities in the dependent variables across the material interface are captured without any dissipation or oscillation using the ghost fluid method on an unstructured grid. It is shown that the material interlace has significant effects on forces acting on a submerged body moving near a pycnocline regardless of the small difference in densities of two layers. Contrary to the shallow water waves, a submerged body can reach a critical speed at very low Froude number due to the small difference in the densities of the two layers.

Stability Analysis of Axially Moving Simply Supported Pipe Conveying Fluid (축방향으로 이송되는 유체유동 단순지지 파이프의 안정성 해석)

  • Son, In-Soo;Hur, Kwan-Do;Lee, Sang-Pill;Cho, Jeong-Rae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.407-412
    • /
    • 2012
  • The dynamic instability and natural frequency of an axially moving pipe conveying fluid are investigated. Thus, the effects of fluid velocity and moving speed on the stability of the system are studied. The governing equation of motion of the moving pipe conveying fluid is derived from the extended Hamilton's principle. The eigenvalues are investigated for the pipe system via the Galerkin method under the simple support boundary. Numerical examples show the effects of the fluid velocity and moving speed on the stability of system. Moreover, the lowest critical moving speeds for the simply supported ends have been presented.

The Analysis of Traffic Flow Characteristics on Moving Bottleneck (연속류 시설의 이동병목구간에서 지체산정방법 -모의실험을 통한 교통류의 평균지체분석-)

  • Kim, Won-Kyu;Jeong, Myeong-Kyu;Kim, Byung-Jong;Seo, Eun-Chae;Kim, Song-Ju
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.4
    • /
    • pp.170-181
    • /
    • 2009
  • When a slow-moving vehicle occupies one of the lanes of a multi-lane highway, it often causes queuing behind, unlike one is caused by an actual stoppage on that lane. This happens when the traffic flow rate upstream from the slow vehicle exceeds a certain critical value. This phenomena is called as the Moving Bottleneck, defined by Gazis and Herman (1992), Newell (1998) [3], and Munoz and Daganzo (2002), who conducted the flow estimates of upstream and downstream and considered slow-moving vehicle speed and the flow ratio exceeding slow vehicle and the microscopic traffic flow characteristics of moving bottleneck. But, a study of delay on moving bottleneck was not conducted until now. So this study provides a average delay time model related to upstream flow and the speed of slow vehicle. We have chosen the two-lane highway and homogeneous traffic flow. A slow-moving vehicle occupies one of the two lanes. Average delay time value is a result of AIMSUN[9], the microscopic traffic flow simulator. We developed a multiple regression model based on that value. Average delay time has a high value when the speed of slow vehicle is decreased and traffic flow is increased. Conclusively, the model is formulated by the negative exponential function.

  • PDF

A COMPUTATIONAL STUDY ABOUT THE ASYMMETRIC AERODYNAMIC EVOLUTION AROUND A CIRCULAR CYLINDER CAUSED BY A MOVING WALL (이동 벽면에 의한 원형 실린더의 비대칭적 공력 발달에 관한 전산연구)

  • Jung J.Y.;Chang J.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.64-70
    • /
    • 2006
  • A Computational study was carried out in order to investigate the moving wall effect of a circular cylinder at a Reynolds number of $2.0{\times}10^4$. The viscous-incompressible Navier-Stokes equations and Spalart-Almaras turbulent model of the commercial CFD code were adopted for this numerical analysis. The moving wall was set parallel with the freestream, and moving speed was equal to the freestream velocity. The gap ratio is defined as the distance ratio between the circular cylinder diameter and the height from the moving wall. The results show that there is vortex shedding over the critical gap ratio and aerodynamic loads including amplitude and the Strouhal number change according to the gap ratio.

Search for Ground Moving Targets Using Dynamic Probability Maps (동적 확률지도를 이용한 지상 이동표적 탐색)

  • Kim, Eun-Kyu;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • In order to achieve success in ground operations, searching for moving targets is one of critical factors. Usually, the system of searching for adversary ground moving targets has complex properties which includes target's moving characteristics, camouflage level, terrain, weather, available search time window, distance between target and searcher, moving speed, target's tactics, etc. The purpose of this paper is to present a practical quantitative method for effectively searching for infiltrated moving targets considering aforementioned complex properties. Based upon search theories, this paper consists of two parts. One is infiltration route analysis, through terrain and mobility analysis. The other is building dynamic probability maps through Monte Carlo simulation to determine the prioritized searching area for moving targets. This study primarily considers ground moving targets' moving pattern. These move by foot and because terrain has a great effect on the target's movement, they generally travel along a constrained path. With the ideas based on the terrain's effect, this study deliberately performed terrain and mobility analysis and built a constrained path. In addition, dynamic probability maps taking terrain condition and a target's moving speed into consideration is proposed. This analysis is considerably distinct from other existing studies using supposed transition probability for searching moving targets. A case study is performed to validate the effectiveness and usefulness of our methodology. Also, this study suggests that the proposed approach can be used for searching for infiltrated ground moving target within critical time window. The proposed method could be used not only to assist a searcher's mission planning, but also to support the tactical commander's timely decision making ability and ensure the operations' success.