• Title/Summary/Keyword: Critical Minimum

Search Result 612, Processing Time 0.03 seconds

'Brine Management through brine mining of trace metals' for developing Secondary sources of nuclear fuel

  • T.L. Prasad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.674-680
    • /
    • 2023
  • The brine and seawater are important and largely untapped sources of critical trace metals and elements. The coupling of selective recovery of trace metals from seawater/brine with desalination plants gives an added advantage of energy credits to desalination plants and as well as reduce the cost of desalinated water. In this paper, status review on recovery of important trace metals and other alkali metals from seawater is presented. The potential of Indian desalination plants for recovery of trace metals, based on recovery ratio of 0.35 is also highlighted. Studies carried out by the process based on adsorption using Radiation Induced Grafted (RIG) polymeric adsorbents and then fractional elutions are presented. The fouling factors due to bio fouling and dirt fouling have been estimated for various locations of interest through field trails. The pay loader in the form of compact Contactor Assembly with minimum pressure drop, for loading specially designed radiation grafted sorbent in leaflet form has been briefed, as required for plant scale facility. The typical conceptual process design details of farm assembly of project CRUDE are described.

Gravitational Instability of Protoplanetary Disks around Low-mass Stars

  • Lee, Gain;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2021
  • Gravitational instability (GI) can produce massive gas giants on wide orbits by fragmentation of protoplanetary disks (PPDs). While most previous works focus on PPDs around solar mass stars, gas giants have been observed in systems with a wide range of stellar masses including M dwarfs. We use the GIZMO code to perform global three-dimensional simulations of self-gravitating disks around low-mass stars. Our models consider heating by turbulent viscosity and stellar irradiation and the β cooling occurring over the dynamical time. We run various models with differing disk-to-star mass ratio q and disk temperature. We find that strongly gravitating disks either produce spirals or undergo fragmentation. The minimum q value for fragmentation is 0.2-0.7, with a smaller value corresponding to a more massive star and/or a smaller disk. The critical q value depends somewhat sensitively on the disk temperature, suggesting that the stellar irradiation is an important factor in determining GI. We discuss our results in comparison with previous work as well as recent ALMA observations.

  • PDF

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani;Il Hyoung Cho
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2024
  • The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.

The Laboratory Study on Estimation of Depositional Properties of Kaolinite Sediments on Saltwater Condition (염도 존재시 고령토 퇴적물의 퇴적특성 산정에 관한 실험적 연구)

  • Hwang, Kyu-Nam;Kim, Nam-Hun;Lee, Yong-Hao
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.863-872
    • /
    • 2008
  • In this study, a series of deposition tests have been conducted on saltwater condition(salinity 32 %o) using an annular flume, in order to estimate depositional properties of kaolinite sediments and to analyze the effect of the initial concentration on them. Total 37 deposition tests have been carried out in three different initial concentrations (1000, 5000, 15000 ppm) with varying the bed shear stress. From these test results, minimum shear stress (or critical shear stress for deposition; ${\tau}_{bmin}$) and the deposition rate parameters (${\sigma}_1,\;({\tau}^*_b-1)_{50},\;{\sigma}_2,\;t_{50}$) for kaolinite sediments have been quantified, and the effects of the initial concentration and salinity on depositional properties of cohesive sediments have been analyzed qualitatively. As the results, ${\tau}_{bmin},\;{\sigma}_1\;and\;({\tau}^*_b-1)_{50}$ are found to be 0.147, 0.74 and $0.65N/m^2$ respectively. Through comparing with results from previous studies, the performance of this study and tests results are shown to be good enough to verify.

The Motion Estimator Implementation with Efficient Structure for Full Search Algorithm of Variable Block Size (다양한 블록 크기의 전역 탐색 알고리즘을 위한 효율적인 구조를 갖는 움직임 추정기 설계)

  • Hwang, Jong-Hee;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.66-76
    • /
    • 2009
  • The motion estimation in video encoding system occupies the biggest part. So, we require the motion estimator with efficient structure for real-time operation. And for motion estimator's implementation, it is desired to design hardware module of an exclusive use that perform the encoding process at high speed. This paper proposes motion estimation detection block(MED), 41 SADs(Sum of Absolute Difference) calculation block, minimum SAD calculation and motion vector generation block based on parallel processing. The parallel processing can reduce effectively the amount of the operation. The minimum SAD calculation and MED block uses the pre-computation technique for reducing switching activity of the input signal. It results in high-speed operation. The MED and 41 SADs calculation blocks are composed of adder tree which causes the problem of critical path. So, the structure of adder tree has changed the most commonly used ripple carry adder(RCA) with carry skip adder(CSA). It enables adder tree to operate at high speed. In addition, as we enabled to easily control key variables such as control signal of search range from the outside, the efficiency of hardware structure increased. Simulation and FPGA verification results show that the delay of MED block generating the critical path at the motion estimator is reduced about 19.89% than the conventional strukcture.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

A Study on Determining Fares for Rail Transit in Tour Regions Using a Stepwise Optimization (단계적 최적화 기법을 통한 관광지역 내 궤도교통수단의 요금결정 연구)

  • Yang, Jae Ho;Kim, Eungcheo;Choi, Eunjin
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.12-21
    • /
    • 2013
  • Fare is critical variable when deciding project feasibility for a monorail system in tour regions. This study aims to estimate optimal fare balancing operators and users. An object of this study is Wolmi-eunha circulation monorail at Jung-Gu, Wolmido in Incheon metropolitan city. This study introduces a stepwise optimization technique to decide relevant fare ranges between operator's cost and user's cost. We found that the optimized station interval is 0.532km, the optimized headway is 0.206hour, optimal number of stations is 12, optimal number of vehicles is 3. Using these optimized variables, minimum user cost and minimum operator cost can be calculated. Optimal fare range is calculated from 1,261 Won to 5,063 Won. It is also found that sightseeing transport system has less sensitivity on access cost because distance differences among sightseeing transport stations located in the tour regions are negligible.

Growth Environments of Cypripedium macranthum Sw. Habitats in Korea (복주머니란 (Cypripedium macranthum Sw.)자생지의 생육환경에 관하여)

  • Kim, Jee-Yeon;Lee, Jong-Suk
    • Horticultural Science & Technology
    • /
    • v.16 no.1
    • /
    • pp.30-32
    • /
    • 1998
  • Growth environments of Cypripedium macranthum Sw. habitats distributed in mountains and highland plains of northern part of Kyunggi-do and Kangwon-do in Korea, were studied in order to obtain basic data. Mean temperature in habitats of Cypripedium macranthum was $14^{\circ}C$ and minimum value was recorded $-7^{\circ}C$ in January, and maximum value was $28^{\circ}C$ in August. Mean soil temperature of the orchid sites was $11^{\circ}C$ and minimum value was $-4^{\circ}C$ in January. The light intensity from March to May was 48,000~51,400 lux and the lowest value was 11,500 lux in July. Light intensity in shade habitat sites from July to August was dropped to 470~865 lux, and the SPAD value was 34.3 in July, which was the highest of the year. The range of soil acidity was pH 5.6~5.8 and soil moisture was 16.4%~36.2%. The highest soil moisture was 36.2% on June. The Cypripedium habitats were correlated with temperature (especially high temperature), light intensit, and soil moisture. However, critical factor seems to be soil moisture in distribution of Cypripedium macranthum in Korea.

  • PDF

Spatio-Temporal Changes and Drivers of Deforestation and Forest Degradation in North Korea (북한 산림의 시·공간 변화와 황폐화 추동)

  • Yu, Jaeshim;Kim, Kyoungmin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.73-83
    • /
    • 2015
  • The objective of this study is to establish implications for forest restoration planning in North Korea by analyzing spatio-temporal forest changes and detecting bio-physical factors driving forest degraded. We measured the relationship and spatial distribution between shifting cultivation and sparse forest. We also analyzed between degraded forest land and ecological variables by binary logistic regression to find biophysical drivers of forest degradation and deforestation in North Korea. Between the sparse forest and the shifting cultivation, a positive relationship is found (r=0.91) and scattered discontinuously throughout the country (Moran's I = -1, Z score = -13.46 (p=0.000)). The sparse forest showed a negative relationship with the warmest month(bio 9), the coldest month(bio10), and the minimum of soil water contents (swc_min), while the shifting cultivation had a negative relationship with the warmest month(bio 9) and the minimum of soil water contents(swc_min). However, the most critical drivers convert forests into sloping farmland were the three months rainfall in summer(bio8) and the yearly mean of soil water contents. Such results reflect the growth period of crops which overlaps with the rainy season in North Korea and the recent land reclamation of uplands where the soil water contents are maintained with a dense forest. When South Korea aids forest restoration projects in North Korea, in consideration of food shortage due to North Korea's cropland deficiency, terrace farmlands where soil water contents can be maintained should be excluded from the priority restoration area. In addition, an evaluation method for selecting a potential restoration area must be modified and applied based on multiple criteria including altitude and socio-economic factors in the respective regions.

Development of Slope Stability Analysis Method Based on Discrete Element Method and Genetic Algorithm I. Estimation (개별요소법과 유전자 알고리즘에 근거한 사면안정해석기법의 개발 I. 검증)

  • Park Hyun-Il;Park Jun;Hwang Dae-Jin;Lee Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.115-122
    • /
    • 2005
  • In this paper, a new method composed of discrete element method and genetic algorithm has been introduced to estimate the safety factor and search critical slip surface on slope stability analysis. In case of estimating the safety factor, conventional methods of slope analysis based on the limit equilibrium do not satisfy the overall equilibrium condition; they must make assumptions regarding the inclination and location of the interstice forces. An alternative slope analysis method based on the discrete element method, which can consider the compatibility condition between force and displacement, is presented. Real-coded genetic algorithm is applied to the search for the minimum factor of safety in proposed analysis method. This search method is shown to be more robust than simple optimization routines, which are apt to find local minimum. Examples are also shown to demonstrate the applicability of the proposed method.