• 제목/요약/키워드: Critical Minimum

검색결과 612건 처리시간 0.033초

VO2 온도센서를 이용한 전원차단 PCM 구성 (Built-in protection circuit module by using VO2 temperature sensors)

  • 송건화;최정범;손명우;유광수
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2009
  • Most portable mobile devices employ rechargeable lithium-ion batteries. This lithium-ion battery usually suffers from the possibility of explosion due to heat generation from surrounding atmosphere or internal deficiency during charging or at overuse. To solve these problems, most rechargeable batteries have a built-in protection circuit module (PCM). The resistance of a properly processed $VO_2$ critical temperature sensor (CTS) is changed dramatically at a critical temperature of around $68^{\circ}C$, which can replace some bi-metal, NTC, or PTC sensors embedded in PCM. Such $VO_2$ CTS consumes a very small current at the level of natural discharge. Experimental results showed that this CTS could be applied to a PCM as the PCM could protect the battery while keeping its power consumption at minimum.

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

Progress in research and development for REBCO coated conductors by reactive co-evaporation

  • Oh, S.S.;Kim, H.S.;Ha, H.S.;Ko, R.K.;Ha, D.W.;Lee, H.;Moon, S.H.;Yoo, S.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.1-5
    • /
    • 2013
  • This paper reviews recent progress in research and development (R&D) of reactive co-evaporation for high performance REBCO coated conductors in Korea. Two types of reactive co-evaporation methods were developed for the deposition of SmBCO and GdBCO superconducting layers respectively on the IBAD (Ion Beam Assisted Deposition)-MgO template in the Korean coated conductor project. Batch type reactive co-evaporation equipment and its processing were developed for SmBCO coated conductors at Korea Electrotechnology Research Institute (KERI) in conjunction with the Korea Advanced Institute of Science and Technology (KAIST), and a very high critical current exceeding 1,000 A/cm at 77 K in the self field was achieved through the optimization of deposition parameters. Reel-to-reel type reactive co-evaporation processing with a high conversion rate was also developed, while long length GdBCO coated conductors have been routinely produced by SuNAM Co. The minimum critical current of 422 A/cm-w at 77 K in self field was confirmed for 1 km-long GdBCO tape.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

고온 초전도 케이블의 굽힘 직경에 따른 임계전류 저하 특성 (Characteristics of Critical Current Degradation with Bending Diameter of High Temperature Superconducting Cable)

  • 김해준;김재호;조전욱;심기덕;배준한;김해종;성기철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1067-1069
    • /
    • 2004
  • 22.9[kV]/50[MVA]/30[m] HTS transmission power cable has been developed and tested at Korea Electrotechnology Research Institute and LG Cable Company by 21 century center for applied superconductivity technology. It is necessary to measure of critical current degradations, AC loss, insulation test and etc at the HTS cable development. This paper is analyzed characteristics that critical current of HTS cable bending condition according to this paper. We will be able to decide the diameter of drum which HTS cable is wound around and minimum curvature radius of HTS cable from results of this research.

  • PDF

Computational thermal stability and critical temperature buckling of nanosystem

  • Chengda Zhang;Haifeng Hu;Qiang Ma;Ning Wang
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.575-590
    • /
    • 2023
  • Many of small-scale devices should be designed to tolerate high temperature changes. In the present study, the states of buckling and stability of nano-scale cylindrical shell structure integrated with piezoelectric layer under various thermal and electrical external loadings are scrutinized. In this regard, a multi-layer composite shell reinforced with graphene nano-platelets (GNP) having different patterns of layer configurations is modeled. An outer layer of piezoelectric material receiving external voltage is also attached to the cylindrical shell for the aim of observing the effects of voltage on the thermal buckling condition. The cylindrical shell is mathematically modeled with first-order shear deformation theory (FSDT). Linear elasticity relationship with constant thermal expansion coefficient is used to extract the relationship between stress and strain components. Moreover, minimum virtual work, including the work of the piezoelectric layer, is engaged to derive equations of motion. The derived equations are solved using numerical method to find out the effects of temperature and external voltage on the buckling stability of the shell structure. It is revealed that the boundary condition, external voltage and geometrical parameter of the shell structure have notable effects on the temperature rise required for initiating instability in the cylindrical shell structure.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

Gate CD Control for memory Chip using Total Process Proximity Based Correction Method

  • Nam, Byung--Ho;Lee, Hyung-J.
    • Journal of the Optical Society of Korea
    • /
    • 제6권4호
    • /
    • pp.180-184
    • /
    • 2002
  • In this study, we investigated mask errors, photo errors with attenuated phase shift mask and off-axis illumination, and etch errors in dry etch conditions. We propose that total process proximity correction (TPPC), a concept merging every process step error correction, is essential in a lithography process when minimum critical dimension (CD) is smaller than the wavelength of radiation. A correction rule table was experimentally obtained applying TPPC concept. Process capability of controlling gate CD in DRAM fabrication should be improved by this method.

사면안정에 응용되는 여러가지 계산법 (The Calculus of Variations Applied to Stability of Slopes)

  • 김경진
    • 기술사
    • /
    • 제16권2호
    • /
    • pp.11-17
    • /
    • 1983
  • This work presents a method for the determination of the safety factor of a slope based on the theory of the calculus of variations. The method allows for the determination of the critical sliding line (The one giving the minimum safety factor) without the necessity of guessing about its shape, which leads to a considerable economy of time and effort. Furthermore it gives the actual safety factor of the slape and consequently a more complete knowledge of the safety of the slope is obtained.

  • PDF