• Title/Summary/Keyword: Critical Micellar Concentration

Search Result 52, Processing Time 0.022 seconds

Micelles in Physical Chemistry Laboratory. Surfactant Catalyzed Oxidation of Glycine by Acidic Permanganate

  • Pare, Brijesh;Kaur, Parwinder;Bhagwat, V.W.;Fogliani, Charles
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.195-202
    • /
    • 2004
  • Micellar catalysis is an essential part of theoretical and experimental curricular. The sodium dodecylsulfate (SDS) catalyzed reaction between glycine and potassium permanganate in acidic medium is an ideal kinetic experiment for the secondary and undergraduate physical chemistry laboratory, to show the effect of micellar catalysis on rate of the reaction. The reaction is conducted both with and without SDS to observe the rate enhancement in the presence of surfactant. To show surfactant catalysis a plot between k and [SDS] is plotted. As surfactant catalysis is observed even before the critical micelle concentration of SDS, this pre-micellar catalysis can be understood in the light of positive co-operativity. The value of positive cooperative index (n) has been found to be 2.37. Further, dependence of the reaction rate on substrate and oxidant concentrations is also discussed. The reaction follows pseudo-first-order kinetics. The overall reaction is second order, with first-order dependence on both glycine and permanganate concentrations. The theory of surfactant catalysis is also discussed. With the conditions specified in the experiment, total reaction times are in 3~4 hours lab session, thus allowing several data sets to be acquired in a single laboratory period. Preparation of solutions and procedure is also given in detail.

Mixed Micellization of Anionic Ammonium Dodecyl Sulfate and

  • Gang, Gye Hong;Kim, Hong Un;Im, Gyeong Hui;Jeong, No Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1009-1014
    • /
    • 2001
  • In aqueous mixtures of cationic OTAC (octadecyl trimethyl ammonium chloride) and anionic ADS (ammonium dodecyl sulfate) surfactants, mixed micelles were formed at low (< 0.2 wt %) total surfactant concentrations. For these mixtures mixed micelliza tion and interaction of surfactant molecules were examined. Mixed critical micelle concentration (CMC), thermodynamic potentials of micellization, and minimum area per surfactant molecule at the interface were obtained from surface tensiometry and electrical conductometry. The mixed micellar compositions and the estimation of interacting forces were determined on the basis of a regular solution model. The CMCs were reduced, although not substantial, and synergistic behavior of the ADS and OTAC in the mixed micelles was observed. The CMC reductions in this anionic/cationic system were comparable to those in nonionic/anionic surfactant systems. The interaction parameter $\beta$ of the regular solution model was estimated to be -5 and this negative value of $\beta$ indicated an overall attractive force in the mixed state.

Kinetic Study using Ultrasonic Technique on the Dissociation-Recombination Reaction between Micelle and Counter-ion in Dodecyl Pyridinium Chloride Solution (超音波를 利用한 Dodecyl Pyridinium Chloride 水溶液中의 미셀과 반대이온 사이의 解離-再結合反應의 反應速度論的 硏究)

  • Kun Moo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.193-197
    • /
    • 1976
  • The ultrasonic absorption has been measured in aqueous solution of dodecyl pyridinium chloride (DPC) at $20^{\circ}C$ over the frequency range of 0.1${\sim}$90 Mc.The excess absorption was observed only in solutions in which the concentration was higher than the critical micellar concentration(cmc). The mechanism for this feature was attributed to the reaction $M_2\;{\rightleftharpoons}\;M_1\;+\;1.2Cl^-$ Where $M_2$ and $M_1$ and M1 are two types of micelle. The rate constants of the forward and the reverse reactions were $6.6{\times}10^5 sec^{-1}\;and\;2.7{\times}10^11sec^{-1}mol^{-1.2}$respectively. Some kinetic charateristics including the free energy, enthalpy and entropy were calculated.

  • PDF

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

Mixed Micellar Properties of Sodium n-Octanoate(SOC) with n-Octylammonium Chloride(OAC) in Aqueous Solution (Sodium n-Octanoate(SOC)와 n-Octylammonium Chloride(OAC)의 혼합마이셀화에 관한 연구)

  • Lee, Byeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.495-501
    • /
    • 2002
  • The critical micelle concentration(CMC) and the counterion binding constant(B) for the mixed micel-lization of sodium n-octanoate(SOC) with n-octylammonium chloride(OAC) were determined as a function of the overall mole fraction of $SOC({\alpha}_1).$ Various thermodynamic parameters($x_i$, $Y_i$, $C_i$, $${\alpha}_i^M$$, and $\Delta$$H_{mix}$) for the mixed micellization of the SOC/OAC systems have been calculated and analyzed by means of the equations derived from the nonideal mixed micellar model. The results show that there are great deviations from the ideal behavior for the mixed micellization of these systems. And other thermodynamic parameters(${\Delta}$$G^0_m$, ${\Delta}$$H^0_m$, and ${\Delta}$$S^0_m$) associated with the micellization of SOC,OAC, and their $mixture({\alpha}_1=0.5)$ have been also estimated from the temperature dependence of CMC and B values, and the significance of these parameters and their relation to the theory of the micelle formation have been considered and analyzed by comparing each other.

Effects of Butanol Isomers on the Mixed Micellization of TTAB/Brij 35 Mixed Surfactant Systems (TTAB/Brij 35 혼합계면활성제의 미셀화에 미치는 부탄올 이성질체들의 효과)

  • Gil, Han-Nae;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • critical micelle concentration (CMC) and the counter ion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at 25oC in water and in aqueous solutions of butanol isomers were determined as a function of 1 (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters (Xi, i, Ci, aiM, and Hmix) were calculated by means of the equations derived from the nonideal mixed micellar model. The results say that the effects of butanol isomers on the micellization of TTAB/Brij 35 mixtures have been in the order of n-butanol>iso-butanol>t-butanol> water.

Study on the Solubilization of Phenoxide Anion into Aqueous Micellar Systems of Cationic Surfactants (양이온 계면활성제에 의한 Phenoxide 음이온의 가용화에 대한 연구)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.383-390
    • /
    • 1998
  • The interaction of phenoxide anion with several cationic surfactant micelles (DTAB, TTAB, CTAB, CDEAB, and CTAC) was studied by UV/Vis spectrophotometric method. The solubilization constants of phenoxide anion into the cationic micellar phase and the critical micelle concentration of these surfactants in the presence of the phenoxide anion could be determined from the absorbance changes. The measured solubilization constants were changed according to the following order: $K_s(CTAC)>K_s(CDEAB)>K_s(CTAB)>K_s(TTAB)>K_s(DTAB).$ Effects of salts(NaCl and NaBr) and n-alcohols(butanol, pentanol, and hexanol) on the solubilization of phenoxide anion by the TTAB system have been also measured and analyzed. There was a great decrease of solubilization constant and CMC with these additives. The standard Gibbs free energy, enthalpy, and entropy changes for the solubilization of phenoxide anion by the TTAB system were calculated from the temperature dependence of $K_s$ values.

  • PDF

Study on the Solubilization of 4-Chlorobenzoic Acid by Aqueous Solutions of Various Cationic, Nonionic, and Mixed Surfactant Systems (양이온성, 비이온성 및 혼합성 계면활성제에 의한 4-클로로벤조산의 가용화에 대한 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.244-254
    • /
    • 2014
  • The interactions of 4-chlorobenzoic acid with the micellar system of various cationic, nonionic, and mixed surfactant systems were studied by the UV/Vis spectrophotometric method. The solubilization constants ($K_s$) of 4-chlorobenzoic acid into those micellar systems have been measured at various temperatures and various thermodynamic parameters for the solubilization of 4-chlorobenzoic acid have been calculated and analyzed from those changes. The results show that the values of ${\Delta}G^o_s$ are all negative within the measured temperature range and that the values of ${\Delta}H^o_s$ and ${\Delta}S^o_s$ are all positive. The effects of alkyl-group's length of surfactant molecules on the solubilization of 4-chlorobenzoic acid have been also measured. The values of $K_s$ were dependent simultaneously on the alkyl-group's length and the kind of head-group in surfactant molecules. From these changes we can postulate the solubilization site and the degree of interaction of 4-chlorobenzoic acid with the micellar systems.

Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation

  • Lee, Eun-Seong;Youn, Yu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1539-1544
    • /
    • 2008
  • A polymeric micelle, based on the poly(benzyl-L-histidine)-b-poly(ethylene glycol) (polyBz-His-b-PEG) diblock copolymer, was designed as a tumor-specific targeting carrier. The micelles (particle size: 67-80 nm, critical micelle concentration (CMC); 2-3 $\mu$g/mL) were formed from the diafilteration method at pH 7.4, as a result of self-assembly of the polyBz-His block at the core and PEG block on the shell. Removing benzyl (Bz) group from polyBz-His block provided pH-sensitivity of the micellar core; the micelles were physically destabilized in the pH range of pH 7.4-5.5, depending on the content of the His group free from Bz group. The ionization of His group at a slightly acidic pH promoted the deformation of the interior core. These pHdependent physical changes of the micelles provide the mechanism for pH-triggering anticancer drug (e.g., doxorubicin: DOX) release from the micelle in response to the tumor’s extracellular pH range (pH 7.2-6.5).

A Comparative Analysis of Pseudophase Ion-Exchange (PIE) Model and Berezin Pseudophase (BPP) Model: Analysis of Kinetic Data for Ionic Micellar-mediated Semi-ionic Bimolecular Reaction

  • Cheong, May-Ye;Ariffin, Azhar;Khan, M.Niyaz
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1135-1140
    • /
    • 2007
  • Pseudo-first-order rate constants (kobs) for the reaction of N-benzylphthalimide (NBPT) with HO- have been determined at 2.0 × 10?4 M NBPT, 1.0 × 10?3 and 2.0 × 10?3 M NaOH as well as varying concentrations of cetyltrimethylammonium bromide ([CTABr]T = 0.0-1.7 × 10?1 M). The effects of [CTABr]T ? CMC (with CMC representing the critical micelle concentration of CTABr) on kobs have been analyzed in terms of Berezin's pseudophase (BPP) model and pseudophase ion-exchange (PIE) model. Although both models give the best observed data fit with least-squares values not significantly different from each other, the calculated values of KS from BPP model appear to be more reliable compared to those from PIE model because the values of KS from BPP model are similar to the corresponding KS values determined spectrophotometrically.