• Title/Summary/Keyword: Critical Geometry

Search Result 306, Processing Time 0.022 seconds

The effect of plastic anisotropy on wrinkling behavior of sheet metal (소성 이방성이 박판의 주름 발생에 미치는 영향)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.14-17
    • /
    • 1999
  • The wrinkling behavior of a thin sheet with perfect geometry is a kind of compressive instability. The compressive instability is influenced by many factors such as stress state mechanical properties of the sheet material geometry of the body contact conditions and plastic anisotropy. The analysis of compressive instability in plastically deforming body is difficult considering all the factors because the effects of the factors are very complex and the instability behavior may show wide variation for small deviation of the factors. In this study the bifurcation theory is introduced for the finite element analysis of puckering initiation and growth of a thin sheet with perfect geometry. All the above mentioned analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme proposed by Riks. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. in order to investigate the effect of plastic anisotropy on the compressive instability a square plate that is subjected to compression in one direction and tension in the other direction is analyzed by the above-mentionedfinite element analysis. The critical stress ratios above which the buckling does not take place are found for various plastic anisotropic modeling method and discussed. Finally the effect of plastic anisotropy on the puckering behavior in the spherical cup deep drawing process is investigated.

  • PDF

Thermal Characteristics of an N2O Catalytic Ignitor with Packed-bed Geometry (팩 베드 형상을 가지는 N2O 촉매 점화기의 열적현상)

  • You, Woo-Jun;Kim, Jin-Kon;Moon, Hee-Jang;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.398-404
    • /
    • 2007
  • In this paper, thermal characteristics of a nitrous oxide ($N_2O$) catalytic reactor with packed-bed geometry are theoretically and numerically investigated. Several researchers experimentally presented that catalytic decomposition of $N_2O$ in a packed bed generates about 82kJ/mole in the exothermic reaction. Based on the results they have studied the catalytic decomposition of $N_2O$ in a packed bed to use it not only as a mono-propellant thrust for small satellites but also as an igniter system for hybrid rockets. So we aim to identify important parameters existing in an $N_2O$ packed-bed geometry, and to clarify its critical effect on thermal characteristics of the catalytic igniter using a porous medium approach.

A critical review on middle school mathematics curriculum revised in 2011 focused on geometry (2011 중학교 수학과 교육과정의 비판적 고찰: 기하 영역을 중심으로)

  • Park, Kyo-Sik;Kwon, Seok-Il
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.2
    • /
    • pp.261-275
    • /
    • 2012
  • There are some geometry achievement standards presented indistinctly in middle school mathematics curriculum revised in 2011. In this study, indistinctness of some geometric topics presented indistinctly such as symbol $\overline{AB}{\perp}\overline{CD}$ simple construction, properties of congruent plane figures, solid of revolution, determination condition of the triangle, justification, center of similarity, position of similarity, middle point connection theorem in triangle, Pythagorean theorem, properties of inscribed angle are discussed. The following three agenda is suggested as conclusions for the development of next middle school mathematics curriculum. First is a resolving unclarity of curriculum. Second is an issuing an authoritative commentary for mathematics curriculum. Third is a developing curriculum based on the accumulation of sufficient researches.

  • PDF

Modeling of Metal Transfer in GMA Welding Process (용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF

NONTRIVIAL SOLUTION FOR THE BIHARMONIC BOUNDARY VALUE PROBLEM WITH SOME NONLINEAR TERM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • We investigate the existence of weak solutions for the biharmonic boundary value problem with nonlinear term decaying at the origin. We get a theorem which shows the existence of nontrivial solutions for the biharmonic boundary value problem with nonlinear term decaying at the origin. We obtain this result by reducing the biharmonic problem with nonlinear term to the biharmonic problem with bounded nonlinear term and then approaching the variational method and using the mountain pass geometry for the reduced biharmonic problem with bounded nonlinear term.

CRITICALITY SAFETY OF GEOLOGIC DISPOSAL FOR HIGH-LEVEL RADIOACTIVE WASTES

  • Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.489-504
    • /
    • 2006
  • A review has been made for the previous studies on safety of a geologic repository for high-level radioactive wastes (HLW) related to autocatalytic criticality phenomena with positive reactivity feedback. Neutronic studies on geometric and materials configuration consisting of rock, water and thermally fissile materials and the radionuclide migration and accumulation studies were performed previously for the Yucca Mountain Repository and a hypothetical water-saturated repository for vitrified HLW. In either case, it was concluded that it would be highly unlikely for an autocatalytic criticality event to happen at a geologic repository. Remaining scenarios can be avoided by careful selection of a repository site, engineered-barrier design and conditioning of solidified HLW. Thus, criticality safety should be properly addressed in regulations and site selection criteria. The models developed for radiological safety assessment to obtain conservatively overestimated exposure dose rates to the public may not be used directly for the criticality safety assessment, where accumulated fissile materials mass needs to be conservatively overestimated. The models for criticality safety also require more careful treatment of geometry and heterogeneity in transport paths because a minimum critical mass is sensitive to geometry of fissile materials accumulation.

EXISTENCE OF THE SOLUTIONS FOR THE ELLIPTIC PROBLEM WITH NONLINEAR TERM DECAYING AT THE ORIGIN

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.533-540
    • /
    • 2012
  • We consider the multiplicity of the solutions for the elliptic boundary value problem with $C^1$ nonlinear term decaying at the origin. We get a theorem which shows the existence of the nontrivial solution for the elliptic problem with $C^1$ nonlinear term decaying at the origin. We obtain this result by reducing the elliptic problem with the $C^1$ nonlinear term to the el-liptic problem with bounded nonlinear term and then approaching the variational method and using the mountain pass geometry for the reduced the elliptic problem with bounded nonlinear term.

Kinematical Investigation and Geometry Modeling of the Perfect Involute Bevel Gearsets (완전한 인볼류트 베벨기어쌍의 기구학적 고찰 및 형상 모형화)

  • Park, N.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.46-56
    • /
    • 1995
  • As demands on the precision bevel gears are increased in the related industry, the exact kinematical investigations of a pair of spherical involute bevel gears are required for the computer aided design. The exact angular velocity ratio based on the characteristics of the spherical involute tooth is derived and verified from the relationship between rotational angles. Elementary kinematics of the gearsets is investigated by applying the transformation of the coordinate systems. The tooth contact lines based on logarithmic tooth-wise curve are examines in three dimentional space. Contact ratio is formulated and simulated according to the system parameters such as shaft angles, pressure angle, and spiral angles. The condition of teeth interference is dervied and the critical numbers of gear teeth are calculated. The whole surface geometry of a spiral bevel gearsets are discretized and visualized by a computer graphic tool.

  • PDF

The Transition from Everyday Definitions to Mathematical Definitions - Gifted Middle School Students' Conceptions of Point and Line definitions - (일상적 정의에서 수학적 정의로의 이행 - 영재 중학생들의 점과 선의 정의 인식 -)

  • Lee, Ji-Hyun
    • The Mathematical Education
    • /
    • v.50 no.4
    • /
    • pp.429-440
    • /
    • 2011
  • This paper analysed gifted middle students' conception of the definitions of point and line and the uses of definitions in proving. The findings of this paper suggest that the concept of mathematical definitions is very unnatural to students, therefore teachers and textbooks need to explain explicitly the characteristics of mathematical definitions which are different from dictionary definitions using common sense. Also introducing undefined terms in middle school geometry would give students a critical chance to deal with the transition from dictionary definitions to mathematical definitions.

Rotordynamic Characteristics Analysis of Turbocharger Turbine for Spin Test (터보차져용 터빈의 스핀 테스트를 위한 로터다이나믹 특성분석)

  • Kim, Byung-Ok;Yang, Sung-Jin;Lee, Myung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.91-95
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the assembly rotor composed of turbine wheel, turbine shaft, connecting arbor, and flange & spindle in order to perform the spin test of turbocharger turbine. Prior to rotordynamic analysis, the 1st spin test was performed but the test was failed by excess vibration in the neighborhood rated speed. It is the reason for this fail that the separation margin between the rated speed and critical speed is not enough, confirmed by rotordynamic analysis results. Since then, the dimension of turbine shaft was modified and the critical speeds were again reviewed for modified assmebly rotor. In results, the separation margin between the rated speed and critical speed is over 20% and then the 2nd spin test was performed successfully. In preparing spin test for turbine, compressor wheels and etc., the geometry design of connecting arbor and dimension of rough machining should be reviewed by considering rotordynamic results, and the separation margin should be enough for successful spin test.