• Title/Summary/Keyword: Critical Angle

Search Result 775, Processing Time 0.028 seconds

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Depth estimation of an underwater target using DIFAR sonobuoy (다이파 소노부이를 활용한 수중표적 심도 추정)

  • Lee, Young gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • In modern Anti-Submarine Warfare, there are various ways to locate a submarine in a two-dimensional space. For more effective tracking and attack against a submarine the depth of the target is a critical factor. However, it has been difficult to find out the depth of a submarine until now. In this paper a possible solution to the depth estimation of submarines is proposed utilizing DIFAR (Directional Frequency Analysis and Recording) sonobuoy information such as contact bearings at or prior to CPA (Closest Point of Approach) and the target's Doppler signals. The relative depth of the target is determined by applying the Pythagorean theorem to the slant range and horizontal range between the target and the hydrophone of a DIFAR sonobuoy. The slant range is calculated using the Doppler shift and the target's velocity. the horizontal range can be obtained by applying a simple trigonometric function for two consecutive contact bearings and the travel distance of the target. The simulation results show that the algorithm is subject to an elevation angle, which is determined by the relative depth and horizontal distance between the sonobuoy and target, and that a precise measurement of the Doppler shift is crucial.

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate (대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.102-112
    • /
    • 2020
  • In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Aerodynamic properties of a streamlined bridge-girder under the interference of trains

  • Li, Huan;He, Xuhui;Hu, Liang;Wei, Xiaojun
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.177-191
    • /
    • 2022
  • Trains emerging on a streamlined bridge-girder may have salient interference effects on the aerodynamic properties of the bridge. The present paper aims at investigating these interferences by wind tunnel measurements, covering surface pressure distributions, near wake profiles, and flow visualizations. Experimental results show that the above interferences can be categorized into two primary effects, i.e., an additional angle of attack (AoA) and an enhancement in flow separation. The additional AoA effect is demonstrated by the upward-moved stagnation point of the oncoming flow, the up-shifted global symmetrical axis of flow around the bridge-girder, and the clockwise-deflected orientation of flow approaching the bridge-girder. Due to this additional AoA effect, the two critical AoAs, where flow around the bridge-girder transits from trailing-edge vortex shedding (TEVS) to impinging leading-edge vortices (ILEV) and from ILEV to leading-edge vortex shedding (LEVS) of the bridge-girder are increased by 4° with respect to the same bridge-girder without trains. On the other hand, the underlying flow physics of the enhancement in flow separation is the large-scale vortices shedding from trains instead of TEVS, ILEV, and LEVS governed the upper half bridge-girder without trains in different ranges of AoA. Because of this enhancement, the mean lift and moment force coefficients, all the three fluctuating force coefficients (drag, lift, and moment), and the aerodynamic span-wise correlation of the bridge-girder are more significant than those without trains.

An Acceleration Method for Processing LiDAR Data for Real-time Perimeter Facilities (실시간 경계를 위한 라이다 데이터 처리의 가속화 방법)

  • Lee, Yoon-Yim;Lee, Eun-Seok;Noh, Heejeon;Lee, Sung Hyun;Kim, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.101-103
    • /
    • 2022
  • CCTV is mainly used as a real-time detection system for critical facilities. In the case of CCTV, although the accuracy is high, the viewing angle is narrow, so it is used in combination with a sensor such as a radar. LiDAR is a technology that acquires distance information by detecting the time it takes to reflect off an object using a high-power pulsed laser. In the case of lidar, there is a problem in that the utilization is not high in terms of cost and technology due to the limitation of the number of simultaneous processing sensors in the server due to the data throughput. The detection method by the optical mesh sensor is also vulnerable to strong winds and extreme cold, and there is a problem of maintenance due to damage to animals. In this paper, by using the 1550nm wavelength band instead of the 905nm wavelength band used in the existing lidar sensor, the effect on the weather environment is strong and we propose to develop a system that can integrate and control multiple sensors.

  • PDF

Stability of hair-tail angling fishing boat according to the induction fishing lamp installation (인덕션 집어등을 설치한 갈치채낚기 어선의 복원성능)

  • Seongjae JEONG;Seongwook PARK;Myongkok JEONG;Geumcheol JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, the stability of fishing boat inducing the change of fishing lamp in accordance with the installation of induction lamp in comparison with metal halide lamp was investigated. Inclining test for 8.55 ton class of hair-tail angling fishing boat was performed in order to find a GM and light weight. A stability calculation of the target fishing boat on the basis of KST-SHIP program was evaluated. The stability of the fishing boat with a metal halide lamp such as induction lamp according to the result obtained by the inclining test is slightly different, and the stability is not so much affected. Due to the induction lamp installation, the wind area increased by about 3.178 m2. Before installing the induction fishing lamp, G0M was found to be 0.209 at full load departure and 0.296 at departure from fishing ground. After installing the induction lamp, the full load departure condition is 0.178 and the fishing ground departure condition is 0.260. The G0M value before and after installation of the induction fishing lamp shows a difference of about 3% at the full load departure condition. The value of the critical angle of inclination definition showed a difference of about 16%. Despite these differences, it is lower than the regulations; it was confirmed that there will be no significant difference unless it is in an overloaded state.

Punching Shear Strength of RC Slabs by Simple Truss Model (단순 트러스 모델에 의한 철근콘크리트 교량 바닥판의 펀칭전단강도)

  • Lee, Yongwoo;Hwang, Hoonhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.187-196
    • /
    • 2008
  • The punching shear strength of RC slabs is estimated analytically by the simple truss model. To avoid intrinsic difficulties in punching shear analysis of reinforced concrete slabs, the slabs were divided into three sub-structures as the punching cone and the remaining parts. The strength of the punching cone was evaluated by the stiffness of inclined strut. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement which passed through the punching cone. Initial angle of struts was determined by curve fitting method of the experimental data with variable reinforcement ratio in order to compensate for uncertainties in the slab's punching shear, the simplification errors and the stiffness of the remaining sub-structures. The validity of computed punching shear strength by simple truss model was shown by comparing with experimental results. The punching shear strength, which was determined by snap-through critical load of shallow truss, can be used effectively to examine punching shear strength of RC slabs.