• Title/Summary/Keyword: Cretaceous basin

Search Result 229, Processing Time 0.024 seconds

Applicability of plate tectonics to the post-late Cretaceous igneous activities and mineralization in the southern part of South Korea( I ) (한국남부(韓國南部)의 백악기말(白堊紀末) 이후(以後)의 화성활동(火成活動)과 광화작용(鑛化作用)에 대(對)한 판구조론(板構造論)의 적용성(適用性) 연구(硏究)( I ))

  • Min, Kyung Duck;Kim, Ok Joon;Yun, Suckew;Lee, Dai Sung;Joo, Sung Whan
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.123-154
    • /
    • 1982
  • Petrochemical, K-Ar dating, Sand Rb/Sr isotopes, metallogenic zoning, paleomagnetic and geotectonic studies of the Gyongsang basin were carried out to examine applicability of plate tectonics to the post-late Cretaceous igneous activity and metallogeny in the southeastern part of Korean Peninsula. The results obtained are as follows: 1. Bulgugsa granitic rocks range from granite to adamellite, whose Q-Ab-Or triangular diagram indicates that the depth and pressure at which the magma consolidated increase from coast to inland varying from 6 km, 0.5-3.3 kb in the coastal area to 17 km, 0.5-10 kb in the inland area. 2. The volcanic rocks in Gyongsang basin range from andesitic to basaltic rocks, and the basaltic rocks are generally tholeiitic in the coastal area and alkali basalt in the inland area. 3. The volcanic rocks of the area have the initial ratio of Sr^{87}/Sr^{86} varying from 0.706 to 0.707 which suggests a continental origin; the ratio of Rb/Sr changing from 0.079-0.157 in the coastal area to 0.021-0.034 in the inland area suggests that the volcanism is getting younger toward coastal side, which may indicate a retreat in stage of differentiation if they were derived from a same magma. The K_2O/SiO_2 (60%) increases from about 1.0 in the coastal area to about 3.0 in the inland area, which may suggest an increase indepth of the Benioff zone, if existed, toward inland side. 4. The K-Ar ages of volcanic rocks were measured to be 79.4 m.y. near Daegu, and 61.7 m.y. near Busan indicating a southeastward decrease in age. The ages of plutonic rocks also decrease toward the same direction with 73 m.y. near Daegu, and 58 m.y. near Busan, so that the volcanism predated the plutonism by 6 m.y. in the continental interior and 4 m.y. along the coast. Such igneous activities provide a positive evidence for an applicability of plate tectonics to this area. 5. Sulfur isotope analyses of sulfide minerals from 8 mines revealed that these deposits were genetically connected with the spacially associated ingeous rocks showing relatively narrow range of ${\delta}^{34}S$ values (-0.9‰ to +7.5‰ except for +13.3 from Mulgum Mine). A sequence of metallogenic zones from the coast to the inland is delineated to be in the order of Fe-Cu zone, Cu-Pb-Zn zone, and W-Mo zone. A few porphyry type copper deposits are found in the Fe-Cu zone. These two facts enable the sequence to be comparable with that of Andean type in South America. 6. The VGP's of Cretaceous and post Cretaceous rocks from Korea are located near the ones($71^{\circ}N$, $180^{\circ}E$ and $90^{\circ}N$, $110^{\circ}E$) obtained from continents of northern hemisphere. This suggests that the Korean peninsula has been stable tectonically since Cretaceous, belonging to the Eurasian continent. 7. Different polar wandering path between Korean peninsula and Japanese islands delineates that there has been some relative movement between them. 8. The variational feature of declination of NRM toward northwestern inland side from southeastern extremity of Korean peninsula suggests that the age of rocks becomes older toward inland side. 9. The geological structure(mainly faults) and trends of lineaments interpreted from the Landsat imagery reveal that NNE-, NWW- and NEE-trends are predominant in the decreasing order of intensity. 10. The NNE-trending structures were originated by tensional and/or compressional forces, the directions of which were parallel and perpendicular respectively to the subduction boundary of the Kula plate during about 90 m.y. B.P. The NWW-trending structures were originated as shear fractures by the same compressional forces. The NEE-trending structures are considered to be priginated as tension fractures parallel to the subduction boundary of the Kula plate during about 70 m.y. B.P. when Japanese islands had drifted toward southeast leaving the Sea of Japan behind. It was clearly demonstrated by many authors that the drifting of Japanese islands was accompanied with a rotational movement of a clock-wise direction, so that it is inferred that subduction boundary had changed from NNE- to NEE-direction. A number of facts and features mentioned above provide a suite of positive evidences enabling application of plate tectonics to the late Cretaceous-early Tertiary igneous activity and metallogeny in the area. Synthesizing these facts, an arc-trench system of continental margin-type is adopted by reconstructing paleogeographic models for the evolution of Korean peninsula and Japan islands. The models involve an extention mechanism behind the are(proto-Japan), by which proto-Japan as of northeastern continuation of Gyongsang zone has been drifted rotationally toward southeast. The zone of igneous activity has also been migrated from the inland in late-Cretaceous to the peninsula margin and southwestern Japan in Tertiary.

  • PDF

Geophysical Studies on Major Faults in the Gyeonggi Massif : Gravity and Electrical Surveys In the Gongju Basin (경기육괴내 주요 단층대의 지구물리학적 연구: 공주분지의 중력 및 지전기 탐사)

  • Kwon Byung-Doo;Jung Gyung-Ja;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.43-50
    • /
    • 1994
  • The geologic structure of Gongju Basin, which is a Cretaceous sedimentary basin located on the boundary of Gyeonggi Massif and Ogcheon Belt, is modeled by using gravity data and interpreted in relation with basin forming tectonism. The electrical survey with dipole-dipole array was also conducted to uncover the development of fractures in the two fault zones which form the boundaries of the basin. In the process of gravity data reduction, the terrain correction was performed by using the conic prism model, which showed better results specially for topography having a steep slope. The gravity model of the geologic structure of Gongju basin is obtained by forward modeling based on the surface geology and density inversion. It reveals that the width of the basin at its central part is about $4{\cal}km$ and about $2.5{\cal}km$ at the southern part. The depth of crystalline basement beneath sedimentary rocks of the basin is about $700{\~}400{\cal}m$ below the sea level and it is thinner in the center than in margin. The fault of the southeastern boundary appears more clearly than that of the northwestern boundary, and its fracture zone may extended to the depth of more than $1{\cal}km$. Therefore, it is thought that the tectonic movement along the fault in the southeastern boundary was much stronger. These results coincide with the appearance of broad low resistivity anomaly at the southeastern boundary of the basin in the resistivity section. The fracture zones having low density are also recognized inside the basin from the gravity model. The swelling feature of basement and the fractures in sedimentary rocks of the basin suggest that the compressional tectonic stress had also involved after the deposition of the Cretaceous sediments.

  • PDF

Petrogeochemistry of Shales in Cretaceous Gyeongsang Supergroup from the Euiseong Basin, Korea (의성분지(義城盆地)에 분포(分布)하는 백악기(白堊紀) 경상누층군(慶尙累層群)의 셰일에 관(關)한 암석지구화학(岩石地球化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • The shales from the Euiseong area are interbedded along the bedding in Cretaceous Gyeongsang Supergroup, which are composed mainly of quartz, plagioclase, K-feldspar and associated with trace amount of biotite, muscovite, chlorite, pyrite, hematite, carbonate and clay minerals. The ratio of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shales from the Shindong Group are ranged from 9.16 to 24.32 and from 1.70 to 5.97, and the Hayang Group ranged from 2.76 to 8.89 and from 0.42 to 2.74, which are negative correlated between $K_2O/Na_2O$ and $Al_2O_3/Na_2O$ against $SiO_2/Al_2O_3$ respectively. Those are suggested that controlled of mineral compositions in shales due to substitution and migration of elements by sedimentation and diagenesis. These shale formation were deposited in basin of terrestrial environments originated from the igneous rocks, and the REE of these rocks are not influenced with diagenesis and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.43 to 0.62) and Th/U (1.11 to 10.71). The narrow range in trace and REE element characteristics as Co/Th (0.63 to 1.92), La/Sc (1.98 to 5.90), Sc/Th (0.58 to 1.30), V/Ni (0.90 to 3.25), Cr/V (0.45 to 1.78), Ni/Co (1.88 to 6.67) and Zr/Hf (30.04~60.87) of these shales argues for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (6.90 to 17.02), Th/Yb (4.17 to 13.68) and La/Th (1.98 to 5.90), and their origin is explained by derivation from a mixture of intermediate to acidic igneous rocks.

  • PDF

Granites and Tectonics of South Korea (남한(南韓)의 화강암류(花崗岩類)와 지각변동(地殼變動))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.223-230
    • /
    • 1975
  • South Korea is divided tectonically into four segments. The Kyonggi-Ryongnam massif is composed of Precambrian schists and gneisses and consititutes a base for the succeeding formations. The Okcheon geosynclinal zone in the Kyonggi-Ryongnam massif strectches from southwest to northeast diagonally across the peninsula in a direction known as the Sinian direction. Its northeastern part is composed primarily of Paleozoic to early Mesozoic sedimentary formations and the southwestern part of the late Precambrian Okcheon metamorphic series. The Kyongsang basin occupies the southeast and southwest of the peninsula and is made up of a thick series of Cretaceous terrestrial sedimentary and andesitic rocks. A few small Tertiary basins are scattered in the eastern coastal area and in Cheju Island, and are composed of marine sedimentary and basaltic rocks. Jurassic Daebo granites intrude the Kyonggi-Ryongnam massif and the Okcheon zone in the Sinian direction, whereas late Cretaceous Bulkuksa granites are scattered randomly in the Kyongsang basin.

  • PDF

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

Petrochmical study on the Volcanic Rocks Related to Depth to the Benioff Zone and Crustal Thickness in the Kyongsang Basin, Korea: A Review (경상분지 화산암류의 지화학적 연구. 섭입대(베니오프대)의 깊이와 지각의 두께)

  • Jong Gyu Sung
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.323-337
    • /
    • 1999
  • Late Cretaceous to early Tertiary volcanic rocks in the Kyongsang basin exhibit high-K calc-alkaline characteristics, and originated from the magmatism related genetically to subduction of Kula-Pacific plate. They represent HFSE depletion and LlLE enrichment characteristics as shown by magmas related to subduction. Early studies on the depth of magma generation has been estimated as 180-230 km based on K-h relation should be reevaluated, because the depth of peridotite partial melting with 0.4 wt. % water is 80-120 km at subduction zone, and subducting slab in premature arc can melted even lower than 70 km. Moreover the increase of potassium contents depends on either contamination of crustal material and fluids of subducting slab or low degree of partial melting. If the inclination of subduction zone is 30 degrees and the depth to the Benioff zone is 180-230 km, the calculated distance between the volcanic zone and trench axis would be 310-400 km. It is unlikely because the distance between the Kyongsang basin and trench during late Cretaceous to early Tertiary is closer than this value and not comparable with generally-accepted models in subduction zone magmatism. $K_{55}$ of the volcanics in the Kyongsang basin is 0.3-2.3 wt.% and the average indicate that the depth ranges between 80-170 km on the diagram of Marsh, Carmichael (1974). Fractionation from garnet lherzolite, assumed the depth of 180-230km, is not consistent with the REE patterns of the volcanoes in the Kyongsang basin. Futhermore, the range of depth suggested by many workers, who studied magmatism related to subduction, imply shallower than this depth. Crustal thickness calculated by the content of CaO and $Na_2O$ is about 30 km and about 35 km, respectively. Paleo-crustal thickness during late Cretaceous to early Tertiary times in the Kyongsang basin inferred about 30 km calculated by La/Sm versus LaJYb data, which is also supported by many previous studies.

  • PDF

Palaeomagnetism of the Cretaceous Yuchon Group in Kosong Area, Southern Kyongsang Basin (경상분지 남단 고성지역의 백악기 유천층군에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.663-674
    • /
    • 2000
  • A total of 165 independently oriented core samples were collected from 19 Cretaceous Yuchon Group sites in Kosong area, the southernmost part of the Miryang subbasin of the Kyongsang Basin in southern Korea. Stepwise AF and thermal cleaning revealed antipodal ChRM from 95 samples from 14 sites. Mean ChRM direction is d=26.0$^{\circ}$, i=49.4$^{\circ}$ (${\alpha}_{95}$=8.2$^{\circ}$, k=24.5, n= 14) before bedding correction and d=28.1$^{\circ}$, i=54.2$^{\circ}$ (${\alpha}_{95}$=4.8$^{\circ}$, k=70.6, n= 14) after bedding correction. A 2.88-fold increase of the precession parameter k by bedding correction indicates pre-folding age of the ChRM with 99% confidence level. Palaeomagnetic pole position calculated from the mean ChRM is 67.0$^{\circ}$N, 210.6$^{\circ}$E (dp=4.7$^{\circ}$, dm=6.7$^{\circ}$), which is significantly different neither from the poles of other part of the Kyongsang Basin nor those of Eurasia including SCB and NCB. This suggests stable relative position of the study area with regard to other parts of the Kyongsang Basin as well as to Eurasia continent since Cretaceous. Three ploarity reversals in the Kosong Formation in addition to the coexistence of normal and reversed polarities in the overlying Andesites and Welded Tuff suggest, in reference to the worldwide geomagnetic polarity time scale, an Albian to Maastrichtian (polarity chron 32r-31r) age of the Yuchon Group of the study area. An alleged hypothesis of stratigraphical correspondence between the Kosong Formation in the study area and the Tadaepo Formation in Pusan area is, however, not tenable: Not only because the latter shows a short reverse polarity only in its lowest part of the sequence but also because the Andesites overlying it is wholly normally magnetized, in contrast to the frequent reverals in the case of both the Kosong Formation and Andesites above it.

  • PDF

Adakitic Signatures of the Jindong Granitoids (진동화강암체의 아다카이틱한 특성)

  • Wee, Soo-Meen;Kim, Yun-Ji;Choi, Seon-Gyu;Park, Jung-Woo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.223-236
    • /
    • 2007
  • The eastern extension of the Cordilleran-type orogenic belt continues from southeastern China to the Chukot Peninsula through the Korean Peninsula. The Gyeongsang basin, located in the southeastern part of the Korean Peninsula and the Inner Zone of southwest Japan are characterized by extensive distribution of Cretaceous to Tertiary I-type calc-alkaline series of intrusive rocks. These intrusive rocks are possibly the result of intensive magmatism which occurred in response to the subduction of the Izanagi Plate beneath the northeastern part of the Eurasian Plate. The Jindong granitoids within the Gyeongsang basin are reported to be adakites, whose signatures are high $SiO_2,\;Al_2O_3$, Sr, Sr/Y La/Yb and, low Y and Yb contents. The major and trace element contents of the Jindong granitoids fall well within the adakitic field, whereas other Cretaceous granites in the same basin are plotted in the island arc ADR area in discrimination diagrams. Chondrite normalized REE patterns show generally enriced LREEs (La/Yb)C = 3.6-13.8) and slight negative to flat Eu anomalies. The mean Rb-Sr whole rock isotopic age of the Jindong granitoids is $114.6{\pm}9.1$ Ma with an initial Sr isotope ratio of 0.70457. These values suggest that the magma has mantle signature and intruded into the area during Early Cretaceous. The Jindong granitoids have similar paleogeographical locations, paleotectonic environments and intrusion ages to those of the Shiraishino granodiorites of Kyushu Island and the Tamba granitoids of San'yo belt located on southwestern Japanese arc.

Movement History of Faults Considered from the Geometric and Kinematic Characteristics of Fracture System in Gilan-cheongsong Area, Gyeongsang Basin, Korea (경상분지 길안-청송 지역에서 단열계의 기하학적.운동학적 특성으로부터 고찰된 단층운동사)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.293-305
    • /
    • 2009
  • The Gilan-Cheongsong area, which is in contact with Yeongyang and Uiseong Blocks of Gyeongsang Basin, Korea, consists of Precambrian metamorphic rocks, Triassic Cheongsong granite, Cretaceous sedimentary rocks(Iljik, Hupyeongdong, Jeomgok Formations), and Cretaceous igneous rocks(andesite, quartz porphyry, felsite). In this area are developed faults trending in (W)NW, NNW, ENE, NS, (N)NE directions which are representative in the Gyeongsang Basin. We analyzed the geometric and kinematic characteristics of fracture systems to inquire into movement history and sense of these faults in this area. This study suggests that these faults were mainly strike-slip movement. The orientations of fracture sets show ENE, NNW, (W)NW, (N)NE, NS in descending order of frequency. Their prolongation presents (W)NW, NNW, ENE, (N)NE, NS in descending order of predominance, and also agrees with that of faults in this area. The development sequence and movement sense of fracture sets are summarized as follows; (1) (W)NW: dextral shearing $\rightarrow$ (2) (W)NW and NNW: conjugate shearing(the former: dextral, the latter: sinistral) $\rightarrow$ (3) NNW: dextral shearing $\rightarrow$ (4) (W)NW: sinistral shearing $\rightarrow$ (5) ENE: dextral shearing $\rightarrow$ (6) ENE and NS: conjugate shearing(the former: sinistral, the latter: dextral) $\rightarrow$ (7) (N)NE: sinistral shearing, and this result is closely associated with the development sequence and movement sense of faults developed in this area.

Geoheritage Values of the Geological Outcrops Distributed in the Dusong Peninsula Geosite of the Busan National Geopark, Korea (부산국가지질공원의 두송반도 지질명소에 분포하는 지질노두의 지질유산적 가치)

  • Cho, Hyeongseong;Kang, Karyung;Cheon, Youngbeom;Son, Moon;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • The social demands to conserve the geological outcrops with important scientific values are increasing. Accordingly public programs such as national geopark are recently established. In this study, outcrops with geological values in the Dusong Peninsula geosite of the Busan National Geopark are investigated in details with a discussion in the aspects of geoheritage values. The Dusong Peninsula is located in the late Cretaceous Dadaepo Basin interpreted as an intra-arc pull-apart basin extended in the Cretaceous Yucheon Subbasin. In this area, a number of noticeable geological records, such as andesitic sills, lower Dadaepo Formation, paleo-seismites, clastic dikes, compound calcrete deposits, syn-depositional normal faults, and unconformity between basin-fill and basements, are observed. Considering their unique geological significance, the strategic plans for their conservation and management should be urgently provided.