• Title/Summary/Keyword: Cretaceous basin

Search Result 229, Processing Time 0.021 seconds

Seismic image of a new cretaceous(\ulcorner) sedimentary basin of the southwestern Korean continental shelf (한국 서남대륙붕의 새로운 백악기(\ulcorner) 퇴적분지의 탄성파 영상)

  • 오진용
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • A new sedimentary basin is reported from the marine multi-channel seismic data which were acquired for the hydrocarbon exploration on the southwestern Korean continental shelf in 1970. Along the southeastern part of Line 1192, the about 60-km-long basin with the thickness of 0.55~1.1 s is observed on the near-trace gather. However, both new and previous 24-fold stack sections fail to show the basin image probably due to its rugged top beneath the shallow water. The boundary contact between the basement with the velocity of about 5200m/s and the basin filling with the velocities of 4300~4700 m/s is unclear. These velocites are calculated from the corresponding shot gathers. Compared with the Haenam Basin, a neighbouring onshore Cretaceous sedimentary basin, we interpret that the new basin includes the volcanics and volcaniclastic sequences deposited in the lacustrine environment. This nonmarine basin was possibly formed as the result of the tectonic movement during the Cretaceous, implying the wide occurrence of the Cretaceous basins over the southern Korean Peninsula as well as its southwestern continental shelf.

  • PDF

PALYNOLOGICAL ASSEMBLAGES FROM LATE CRETACEOUS TO TERTIARY DEPOSITS OF KACHI-I WELL, BLOCK II, YELLOW SEA BASIN, KOREA

  • YI Sangheon
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.1-11
    • /
    • 1997
  • Thirty one samples from Late Cretaceous and Tertiary interval sections (468-783m) of the Kachi-I Well in Block II, Yellow Sea Basin, have been analysed for their terrestrially derived palynofloras. The systematic study of the palynomorphs recovered has yielded one hundred and fifty-five taxa; forty-three species of spores belonging to twenty-eight genera, seventy-seven pollen assignable to forty-three genera, and twenty-seven species assignable to fifteen genera and eight fungal remains. The results of both qualitative and quantitative analysis propose a succession of eight terrestrial palynomorph associations. Seven associations are erected in Late Maastrichtian and one in Early to Middle Miocene. Age determinations are on the basis of palynomorph taxa alone for the all associations. The Late Cretaceous/Tertiary unconformity is recognised at between 603 and 613m, based on the palynological data. The sedimentary basin during the Late Cretaceous seem to be lowland shallow marginal lacustrine with stagnant, mesotrophic conditions. On the other hand, the basin during the Early-Middle Miocene is considered to have been characterised by lowland swamp areas. The palaeoclimatic conditions during the Late Cretaceous are considered to be humid tropical to subtropical, while during the Early to Middle Miocene they are considered to be warm temperate with humid conditions. A comparison of palynomorph assemblages between the present study and the previous studies of Late Cretaceous in Circum-Pacific Northern Hemisphere is made, These assemblages reveal that lower sections (612-783m) of the Kachi-I well belong to the Late Cretaceous Aquilapollenites province of Herngreen and Chlonova (1981) and Srivastava (1981, 1994).

  • PDF

Stratigraphy of the Central Sub-basin of the Gunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 중앙소분지의 층서)

  • Kim, Kyung-min;Ryu, In-chang
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.233-248
    • /
    • 2018
  • Strata of the Central sub-basin in the Gunsan Basin, offshore, western Korea were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the basin: Sequence I (Cretaceous or older(?)), Sequence II (Late Cretaceous), Sequence III (late Late Cretaceous or younger(?)), Sequence IV (Early Miocene or older(?)), Sequence V (Middle Miocene). Since the late Late Jurassic, along the Tan-Lu fault system wrench faults were developed and caused a series of small-scale strike-slip extensional basins. The sinistral movement of wrench faults continued until the Late Cretaceous forming a large-scale pull-apart basin. However, in the Early Tertiary, the orogenic event, called the Himalayan Orogeny, caused basin to be modified. From Late Eocene to Early Miocene, tectonic inversion accompanied by NW strike folds occurred in the East China. Therefore, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin and Oligocene formation is hiatus. The rate of tectonic movements in Gunsan Basin slowed considerably. In that case, thermal subsidence up to the present has maintained with marine transgressions, which enable this area to change into the land part of the present basin.

Channel-fill Deposits of Gravel-bed Stream, Southeastern Eumsung Basin (Cretaceous), Korea

  • Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.757-767
    • /
    • 2006
  • Alluvial-plain deposits in the southeastern part of the Eumsung Basin (Cretaceous) are characterized by coarse-grained channel fills encased in purple siltstone beds. It represents distinct channel geometry, infill organization, and variations in facies distribution. The directions of paleocurrent, sedimentary facies changes, and channel-fill geometry can be used to reconstruct a channel network in the alluvial system developed along the southeastern margin of the basin. The channel-fill facies represent downstream changes: 1) down-sizing and well-sorting in clast and martix of channel fills and 2) internal organization of scour fill or gravel lag and overlying cross-stratified, planar-stratified beds. These findings suggest multiple stages of channel-filling processes according to flooding and subsequent stream flows. In the small-scale pull-apart Eumsung Basin (${\sim}7{\times}33km^2$ in area), vertical-stacked alluvial architecture of the coarse-grained channel fills encased in purple siltstone is expected to result from episodic channel shifting under a rapidly subsiding setting.

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.

Tectonics and Evolutionary History of the Cretaceous Intra-arc Yongdong Basin, Korea

  • Lee, Dong-Woo
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.565-580
    • /
    • 2009
  • The Yongdong basin developed during Early Cretaceous in the central part of the Korean Peninsula and bounded on the northwest and southeast by northeast trending mega-scale strike-slip Yongdong Fault. An 8 km thick succession of exclusively terrigeneous sediments can be grouped into two mega-sequences. In concert with the migration of depocenter, the upper sequence overlaps the lower and occupies northern part of the basin during basin evolution. Alluvial and lacustrine environments were predominantly formed from early to late stage of the basin formation. Several lines of evidence support that the basin was formed within intra-arc tectonic environments and destroyed by polyphase tectonic force. Schematic evolutionary diagram of the basin is proposed.

Detrital Zircon U-Pb Ages of the Cretaceous Gurye Group, Gurye Basin, Korea: Implications for the Depositional Age and Provenance (백악기 구례분지 구례층군의 쇄설성 저어콘 U-Pb 연대: 퇴적시기와 퇴적물 기원지에 대한 의미)

  • Kim, Youhee;Chae, Yong-Un;Ha, Sujin;Choi, Taejin;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.405-429
    • /
    • 2022
  • Detrital zircon LA-MC-ICP-MS U-Pb dating of the Cretaceous Gurye Group, Gurye Basin, was carried out. Gurye Group consists of Supyeongri, Geumjeongri, Togeum, and Obongsan formations in ascending order, and five samples were collected for age dating. Based on the dating results, the lowermost Supyeongri and the uppermost Obongsan formations show narrow age ranges. Only Precambrian and Late Cretaceous zircons were found in the Supyeongri and Obongsan formations, respectively. However, the upper and lower Geumjeongri, and Togeum formations show wide age ranges from the Precambrian to Cretaceous. The youngest detrital zircon U-Pb ages of each formation except the Supyeongri Formation, which lacks Cretaceous zircon, were calculated to be ca. 107.4 Ma in the lower Geumjeongri Formation, ca. 104.6 Ma in the upper Geumjeongri Formation, ca. 97.7 Ma in the Togeum Formation, and ca. 88.5 Ma in the Obongsan Formation. Such results indicate that the depositional age of the Gurye Group can be constrained from the Lower Cretaceous Albian to the Upper Cretaceous Coniacian. Based on the distribution of the detrital zircon ages from each formation, the source area of the Gurye Group is interpreted to have been extended from the adjacent Youngnam Massif to the Okcheon Belt throughout the basin evolution. The increase of the Cretaceous zircon with time is thought to reflect the slab roll-back of the proto-Pacific plate during the Cretaceous.

Geologica Structure of the Euiseong Sub-basin by Anlaytic Aeromagentic Anomaly Data (항공자력의 Analytical 이상을 이용한 의송소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.229-237
    • /
    • 2000
  • The structure of Euiseong Sub-basin and boundary of sub-basins were examined by analytical aeromagentci anomaly data. Magnetic lineaments have trends of NE-SW, NWW-SEE and NEE-SWW. The NE-SW lineaments in the sedimentary formations and pre-Cretaceous basement are assoicated with the direction of expansion of basin and the lineaments in the volcanic rocks and intrusives indicate the direction of structural weakness ones such as fault, which were major gateways of igneous activities. Euiseong Subbasin is bounded by pre-existing Andong Fault, pre-Cretaceous basement in the west, NE-SW lineament from Jyungsan to Angang, and NW-SE lineament connecting southwestern boundary of Palgongsan Granite and Jeokje Fault. In particular , the NW-SE lineament , which caused upheavel of pre-Cretaceous rocks, on Jeokje Fault is inferred as a boundary between Euiseong and Milyang Sub-basins.

  • PDF

Tectonics, sedimentation, and magmatism of the Cretaceous Gyeongsang (Kyongsang) Basin, Korea: Integrated approach to defining basin history and event mineralization

  • Chang, Ryu-In;Park, Seon-Gyu;Meen, Wee-Soo;Lee, Sang-Yeol
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.27-31
    • /
    • 2003
  • During the past decade, integrated stratigraphy has been effectively applied to many sedimentary basins to analyze stratigraphic response to tectonic evolution. This application has been beneficial to hydrocarbon exploration in the basins because it provides a better understanding of temporal and spatial relationships of hydrocarbon source and reservoir rocks as a function of basin evolution. Like the maturation, migration, and trapping of hydrocarbons, ore-forming processes in hydrothermal deposits may be causally linked to particular phases of basin evolution. Consequently, applying integrated stratigraphy to mineral exploration may be a logical and helpful approach to understanding ore-forming processes and predicting their occurrence, location, and origin. (omitted)

  • PDF

Paleomagnetic Study for Tectonism on the Okcheon Zone Since Mesozoic (옥천대의 중생대 이래의 지구조적 운동에 관한 고지자기 연구)

  • Lee, Youn Soo;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.493-501
    • /
    • 1995
  • Carboniferous and Cretaceous rock samples were collected from 3 and 12 sites respectively in the vicinity of the Okcheon Zone. Mean directions of characteristic component magnetizations from Carboniferous rocks along the Honam Shearzone reveal that the Okcheon zone was considerably rotated and deformed during Triassic. The amount of rotations were clockwisely $80.3^{\circ}$ in Mungyeong and $42.4^{\circ}$ in Hwasun areas. Mean directions of characteristic component magnetizations obtained from Cretaceous Yeongdong and Neungju Basin were identical to those from the Gyeongsang Basin in the Yeongnam Block indicating no relative motion between them since Cretaceous. Cretaceous paleopole position from 4 locations, $204.9^{\circ}E$ in longitude and $65.1^{\circ}N $ in latitude.

  • PDF