• 제목/요약/키워드: Creep rupture

검색결과 206건 처리시간 0.028초

미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가 (High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen)

  • 류대영;백승세;유효선
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

발전플렌트용 9Cr 페라이트 내열강의 고온강도 특성에 미치는 Ni의 영향 (Effect of Ni on the High Strength Characteristic of 9Cr Ferritic Heat Resistant Steel Applied to the Power Plants)

  • 강창룡;궁원일재
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.74-80
    • /
    • 2000
  • This present study was investigated effect of Ni contents on the high temperature strength characteristic in 9Cr ferritic heat-resistant steel added 1.7%W in place of Mo in order to restraint laves phase formation. Precipitation amount of carbide, number of particle per unit area and particle size of carbide were decreased with increase of Ni content. In the steels, carbides of $M_{23}C_6$ type was mainly precipitated, but laves phases could not precipitated. Tensile and yield strength, creep strength and creep rupture time was decreased, but elongation were increased due to decreasing of particle number per unite area and carbide amount precipitated with increase of Ni content.

  • PDF

Zr-4의 고온 크리프 및 응력이완 특성에 관한 연구 (A Study on High Temperature Creep and Stress Relaxation Properties of Zr-4)

  • 오세규;박정배;한상덕
    • 수산해양기술연구
    • /
    • 제28권1호
    • /
    • pp.71-78
    • /
    • 1992
  • Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 50$0^{\circ}C$ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate $\varepsilon$(%/s) for the stress $\sigma$sub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation($\varepsilon$=K$\sigma$ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881$\times$10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)$\sigma$sub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875$\times$10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.

  • PDF

티타늄합금(Ti-6Al-4V)의 0.3Tm에서 크리프 특성 (Creep Characteristics of Titanium Alloy(Ti-6Al-4V) at 0.3Tm)

  • 윤종호;황경충;우현구
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.117-122
    • /
    • 2005
  • Titanium alloy has widely been used as material for glasses frame parts because it has high specific strength. It is also light and harmless to human body. However, we have little design data about the mechanical properties such as the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with four different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 2.5. Finally, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture and some dimples.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

전력용 강재의 정적.동적 크리프의 상관성과 예측 및 AE평가(1); 정적 크리프와 AE평가 (Life Prediction and AE Evaluation of Pure or Cyclic Creep for Power Plant Materials ; Pure Creep and AE Evaluation)

  • 오세규;장홍근;송정근
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.76-84
    • /
    • 1998
  • In this 1st report, the relationship between pure creep properties and initial strain was studied and also its acoustic emission test was performed during creep test at 500, 600 and $700^{\circ}C$. And the applicability of the acoustic emission technique was investigated to analyze the quantitive relationship between all the pure properties (creep strength, creep repture time or creep life, steady state creep rate, total creep rate, creep strain, total creep strain, etc.) and the initial strains as well as to analyze AE properties during the pure creep loading condition.

  • PDF

박판 크리프 수명평가에 마찰계수의 영향 (Effects of Friction Coefficient on Creep Life Assessment of Sheet)

  • 정지용;임지우;금영탁
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.435-440
    • /
    • 2010
  • The creep life of 9Cr1MoVNb steel, in terms of Larson-Miller parameter(LMP), was evaluated by small punch(SP) creep simulation and verified by uniaxial creep test. By employing the elastoplastic FEM(finite element method), the small punch creep behaviors associated with various friction coefficients were simulated to identify a real friction phenomena. The friction coefficient, ${\mu}$=0.7, determined by comparing deflection history was used in the small punch creep simulation to find the equivalent stresses with which the relationship between punch load and uniaxial creep stress was found. The creep life was then predicted by the LMP, which was the relationship among the rupture time, temperature, and stress. Finally, the LMP calculated by SP-creep simulation was compared with that had computed by the uniaxial creep test and fairly matched LMPs were found.

AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구 (A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy)

  • 강대민;안정오
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

CU 순금속의 사이클릭 크리프 변형 (Cyclic Creep Strain of Cu Pure Metal)

  • 정순억;이헌식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.194-199
    • /
    • 2000
  • The creep rate is affected by the temperature and in fact. if the temperature above $T_M/2(T_M:melting\;point)$. The aim of the present investigation is to study the relationship of static creep and cyclic creep behavior of pure copper and the formulation of these phenomena with the special attention to the instantaneous strain. strain rate from time and number of cycles have the same inclination Steady state creep rate depend upon maximum stress and can be expressed as linear function according to Power law creep equations Creep rupture time has relation with creep rate. and it make a group represented as the same direct line regardless of max stress, stress ratio and the temperature. Initial strain effect on continuous creep deformation. and have guantitative relationship between elastic and Plastic strain. LMP have similar tendency than OSDP and MHP according to temperature

  • PDF

스테인레스강용접 열영향부의 KLA거동 및 기계적 특성에 관한 연구 (A study on the KLA behaviors in HAZ and the mechanical properties of austenitic stainless steel weld)

  • 조종춘;김영석;김학민
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.27-34
    • /
    • 1990
  • Integranular corrosion behaviors of KAL (Knife Line Attack) and mechanical properties such as tensile and creep rupture were investigated for the tube material used for nearly 20 years under the condition of 463.deg. C and 28 $kg/cm^2$. Based and weld metal were austenitic stainless steel AISI 321 containing Ti, AISI 347 containing Nb, respectively. KLA is a kind of the intergranular corrosion which often occurs just near the HAZ (heat affected zone) of AISI 321 and AISI 347 stainless steel due to the grain boundary sensitization. In KLA zone, intergranular corrosion crack has propagated outwards from the inner surface and carbides of white and narrow band type assuming as (Cr, Fe) carbide were confirmed. All the delta-ferrite formed in the weld metal during weld solidification has been transformed into sigma-phase since delta-ferrte was exposed for 20 years at 463.deg. C. Elongation was very low at the range from room temperature to 600.deg. C and it was confirmed that creep-rupture properties were not consideralbly affected.

  • PDF