• Title/Summary/Keyword: Creep rate

Search Result 327, Processing Time 0.025 seconds

Experimental investigation of long-term characteristics of greenschist

  • Zhang, Qing-Zhao;Shen, Ming-Rong;Ding, Wen-Qi;Jang, Hyun-Sic;Jang, Bo-An
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.531-552
    • /
    • 2016
  • The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

Analysis of the strain energy release rate for time-dependent delamination in multilayered beams with creep

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of units in the viscoelastic model on the strain energy release rate are clarified.

High-Temperature Mechanical Behaviors of Type 316L Stainless Steel (Type 316L 스테인리스강의 고온 기계적 거동)

  • Kim, Woo-Gon;Lee, Hyeong-Yeon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.

Bending Creep and Creep Facture of Alumina under High-Temperature (알루미나의 고온 굽힘 크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

Bending Creep and Creep Fracture of Sintered Alumina under High-Temperature (알루미나의 고온 굽힘크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 1994
  • The creep behavior and creep fracture of sintered alumina at high temperature were investigated under four point flexural test. Steady-state creep behavior was observed at low bending stress and primary creep until fracture was observed at hish bending stress. The loading history of bending stress did not affect on steady-state creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep of alumina under high temperature by nucleation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay (포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동)

  • 강우묵;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF

The Creep Behavior of Austentic SUS 27 by Moire Method (모아레法 을 活용 比較한 오우스테나이트系 SUS 27 의 크리이프擧動)

  • 옹장우;이훈주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 1983
  • This study practiced to observe the creep behavior at specific temperature on Austentic SUB 27 stainless steel by Moire method. The results obtained from this study are summarized as follows; In tensile experiment, tensile strength and yielding strength decrease as the temperature increases. Yielding strength is equivalent to 60-70% of tensile strength. Reduction of Area and Elongation show minimum values at 300.deg. C. The results of Moire method using Moire heating resisting grid coincide with LVDT result. Therefor, It is proved that the Moire method has great merit in strain measurement of a creep behavior. In homologous at temp. 0.2 or less, creep behavior is very small amount. But, in more than 0.3, creep behavior is very active. Creep rate increase as temperature increase and creep rate is proportional to .alpha. values of experimental equation.

Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

  • Kim, Woo-Gon;Park, Jae-Young;Ekaputra, I Made Wicaksana;Kim, Seon-Jin;Jang, Jinsung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.581-591
    • /
    • 2017
  • Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at $600^{\circ}C$. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions.

Crack Analysis of Creep Material Containing Rigid Inclusion with Line Crack Shape (직선 균열 강체 함유물을 내포하는 크?재료의 균열 해석)

  • 이강용;김종성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.91-97
    • /
    • 1998
  • The analysis model is the infinite body consisted of power law creep material containing a rigid inclusion with line crack shape subjected to the arbitrarily directional stress on an infinite boundary. The crack analysis is performed using the complex pseudo-stress function. The strain rate intensity factor is determined in the closed form as new fracture mechanics parmeter which represents the magnitudes of stress and strain rate near the tip in power law creep material.

  • PDF

Development of new fracture parameter for rigid inclusion with crack shape in creep material (크립재료의 균열형상 강체함유물에 대한 새로운 파괴역학 매개변수 개발)

  • Lee, Kang-Yong;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2165-2171
    • /
    • 1997
  • The analysis model is the infinite power law creep material containing the rigid inclusion with crack shape. The present analysis is performed using the complex pseudo-stress function method. The strain rate intensity factor is developed as new fracture mechanics parameter which represents the stress and strain rate distribution near a crack tip in power law creep material. The strain rate intensity factor is developed in terms of Kolosoff stress functions.