• Title/Summary/Keyword: Creep rate

Search Result 327, Processing Time 0.024 seconds

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.

Degradation Damage Evaluation for Turbine Structural Components by Electrochemical Reactivation Polarization Test (전기화학적 재활성화 분극시험에 의한 터빈부재의 열화손상 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Lyu, Dae-Young;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1241-1249
    • /
    • 2002
  • The extent of materials deterioration can be evaluated accurately by mechanical test such as impact test or creep test. But it is almost impossible to extract a large test specimen from in-service components. Thus material degradation evaluation by non-destructive method is earnestly required. In this paper, the material degradation for virgin and several aged materials of a Cr-Mo-V steel, which is an candidated as structural material of the turbine casing components for electric power plant, is nondestructively evaluated by reactivation polarization testing method. And, the results obtained from the test are compared with those in small punch(SP) tests recommended as a semi-nondestructive testing method using miniaturized specimen. In contrast to the aged materials up to 1,000hrs which exhibit the degradation behaviors with increased ${\Delta}[DBTT]_{SP}$, the improvement of mechanical property can be observed on the 2,000hrs and 3,000hrs aged materials. This is because of the softening of material due to the carbide precipitation, the increase of ferritic structures and the recovery of dislocation microstructure by long-time heat treatment. The reactivation rates($I_R/I_{Crit},\;Q_R/Q_{Crit}$) calculated by reactivation current densityt ($I_R$) and charge($Q_R$) in the polarization curves exhibit a good correlation with ${\Delta}[DBTT]_{SP}$ behaviors.

Analysis of Creep Effective Stress in Austenitic Heat Resistant Steel (오스테나이트계 내열강의 크리프 유효응력 해석)

  • Nam, Ki-Woo;Park, In-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1317-1323
    • /
    • 2002
  • This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni (STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at $650^{\circ}C$, $675^{\circ}C$ and $700^{\circ}C$. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests.

RHEOLOGICAL PROPERTIES OF OIL/WATER EMULSION AND OIL/LIQUID CRYSTAL/WATER SYSTEMS AND THEIR CONSUMER PERCEPTION IN HAIR CARE PRODUCTS

  • Kim, Chong-Youp;Hong, Jong-Eoun;Kim, Su-Hyun;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.123-131
    • /
    • 1999
  • Liquid crystal known as a rheological barrier to coalescence of oil droplets, increases emulsion stability, water-holding capacity and promotes active material penetration to skin. Some investigation for its rheological characteristics have been reported but its relations to consumer perception have been rarely published. In this study, oil/water emulsion and oil/liquid crystal/water systems were manufactured using the same composition or Behenyltrimethylammonium chloride/Cetostearyl alcohol/Lanolin oil. and rheological properties or each system were investigated with Cone and Plate rheometer. The formation of liquid crystalline phase was observed with polarized microscope and Differential Scanning Calorimeter. Continuous shear experiment, creep, yield and water holding capacity were measured for oil/water and oil/liquid crystal/water systems. The results were compared with sensory evaluations. Oil/liquid crystal/water system showed higher,viscosity at the same shear rate. higher viscoelasticity and higher yield stress than oil/water system. These properties were expected to show good spreadability and excellent richness without waxiness in hair can: products of creme type. This expectation was consistent with the results of sensory experiments. Water-holding capacity was evaluated by measuring residual water of specimens at specific temperature and relative humidity. Oil/liquid crystal/water system was proved to have higher ability to hold water in comparison with oil/water system. The results indicated that oil/liquid crystal/water system was of benefit to rheological properties creme type hair care products.

  • PDF

ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ Based Ceramics Varistors with High Stability under d.c. stress (d.c. 스트레스에 높은 안정성을 갖는 ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$계 세라믹 바리스터)

  • Park, Choon-Hyun;Yoon, Han-Soo;Nahm, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1003-1007
    • /
    • 1999
  • This paper is reported for the stability of ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ based ceramic varistors with $Er_{2}O_{3}$ added in the addition range 0.0 to 2.0 mol%. The varistors sintered at $130^{\circ}C$ exhibited abrupt positive current creep phenomena, which accompany thermal run away within short times, even under weak d.c. stress. As a result, these varistors were completely degraded. On the contrary, the stability of varistors sintered at $1350^{\circ}C$ was far better than that of $1300^{\circ}C$. In particular, the varistor containing 0.5 mol% $Er_{2}O_{3}$ showed a excellent stability, which the variation rate of the varistor voltage, the nonlinear coefficient, and leakage current is below 1%, 2%, and 3.5%, respectively, even under more severe d.c. stress, such as ($0.8V_{1mA}/90^{\circ}C/12h$) + ($0.85V_{1mA}/115^{\circ}C/12h$) + ($0.9V_{1mA}/120^{\circ}C/12h$) + ($0.9V_{1mA}/150^{\circ}C/12h$). Consequently, it is estimated that the basic composition of ZnO-$Pr_{6}O_{11}-CoO-Er_{2}O_{3}$ based varistor contain 0.5 mol% $Er_{2}O_{3}$ will be used to the fabrication of the varistors for high performance and stability in a forthcoming.

  • PDF

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

A Constitutive Model Using the Spacing Ratio of Critical State (한계상태 간격비를 이용한 구성모델)

  • Lee, Seung-Rae;O, Se-Bung;Gwan, Gi-Cheol
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-58
    • /
    • 1992
  • An elasto-plastic constitutive model for geological materials, which satisfies the flezibility and stability at the same time, can be used in a number of geotechnical problems. Using the spacing ratio of critical state, a flexible model is proposed based on the stability of modified Camflay model. The spacing ratio of critical state can be simply evaluated, and practically used in describing the undrained shearing behavior of clay. The proposed model has precisely predicted the stress paths and stress -strain relationships, compared with the modified Camflay model, with respect to undrained triaxial test results. Besides, the effects of strain rate, creep, and relaxation can also be considered. Using the quasi-state boundary surface, the constitutive relations are well predicted. Therefore, it is found that the assumption of associative flow rule is well posed for undrained behavior of normally consolidated clay.

  • PDF

A Semi-Implicit Integration for Rate-Dependent Plasticity with Nonlinear Kinematic Hardening (비선형 이동경화를 고려한 점소성 모델의 내연적 적분)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1562-1570
    • /
    • 2003
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

PHEOLOGICAL PROPERTIES OF OIL/WATER EMULSION AND OIL/LIQUID CRYSTAL/WATER SYSTEMS AND THEIR CONSUMER PERCEPTION IN HAIR CARE PRODUCTS

  • Kim, Chongyoup;Jongeoun Hong;Kim, Suhyun;Hakhee Kang
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.123-131
    • /
    • 1999
  • Liquid crystal known as a rheological barrier to coaleseence of oil dorplets. increases. emulsion stability, water-holding capacity and promotes active material penetration to skin. Some investigation for its rheological characteristics have been reported but its relations to consumer perception have been rarely published. In this study oil/water emulsion and oil/liquid crystal/water systems were manufactured using the same composition of Behenyltrimethylammonium chloride/Cetostearyl alcohol/Lanolin oil. and rheological properties of each system were investigated with Cone and Plate rheometer. The formation of liquid crystalline phase was observed with polarized microscope and Differential Scanning Calorimeter. Continuous shear experiment, creep yield and water holding capacity were measured for oil/water and oil/liquid crystal/water systems. The results were compared with sensory evaluations. Oil/liquid crystal/water system showed higher viscosity at the same shear rate, higher viscoelasticity and higher yield stress than oil/water system. These properties were expected to show good spreadability and excellent richness without waxiness I hair care products of creme type. This expectation was consistent with the results of sensory experiments. Water-holding capacity was evaluated by measuring residual water of specimens at specific temperature and relative humidity, Oil/liquid crystal/water system was proved to have ability to hold water in comparison with oil/water system. The results indicated that oil/liquid crystal/water system was of benefit to rheological properties creme type hair care products.

  • PDF

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.