• Title/Summary/Keyword: Creep rate

Search Result 329, Processing Time 0.023 seconds

Study on Dressing Conditions for Creep-feed in Cubic Boron Nitride Grinding of OrthoMTA Compacters (OrthoMTA 컴팩터의 크리프피드 CBN 연삭을 위한 드레싱 조건 연구)

  • Maeng, Heeyoung;Baek, Eun-Pyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.69-74
    • /
    • 2014
  • An OrthoMTA compacter is made by machining a Ni-Ti alloy wire using tapered helix creep-feed grinding machines. This aim of this study is to find the optimal dressing conditions to sharpen the corner of a cubic boron nitride (CBN) wheel. On the basis of the results of various experiments, it is verified that the most important factors in dressing are the dressing depth and feeding method, whereas the feed rate has less importance for producing a smaller corner R value. The study also finds the optimum dressing depth to reduce the dressing time, a feeding speed and method to stabilize the machining, and the mesh grade for the CBN wheel to make the groove of the compacter deeper.

Creep Characteristic of QFP Solder Joint using Sn-3Ag-0.5Cu (Sn-3Ag-0.5Cu을 적용한 QFP 솔더 접합부의 크립특성에 관한 연구)

  • Jo, Yun-Seong;Han, Seong-Won;Kim, Jong-Min;Choe, Myeong-Gi;Park, Jae-Hyeon;Sin, Yeong-Ui
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.184-186
    • /
    • 2006
  • Sn-3Ag-0.5Cu is one of candidate as an alternative approach to conventional lead-tin solder. In order to evaluate that creep characteristic of QFP, we used Sn-3Ag-0.5Cu where the operating temperature is $100^{\circ}C$. The specimens were loaded to failure at average pull strength in the range of 20% to 25%, X-ray machine is used to eliminate effect of void. In this paper, relation of time-displacement and steady state creep rate was studied, and used to analyze the experimental result.

  • PDF

Evaluation of Ct-parameter for Weld Interface Crack Considering Material Plastic Behavior (재료의 소성 거동을 고려한 용접 계면균열의 Ct 매개변수)

  • Yun, Gi-Bong;Lee, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.676-684
    • /
    • 2000
  • In this study, behavior of $C_t$ which is a well-known fracture parameter characterizing creep crack growth rate, is investigated for weld interface cracks. Finite element analyses were per formed for a C(T) specimen under constant loading condition for elastic-plastic-creeping materials. In modeling C(T) geometry, an interface was employed along the crack plane which simulated the interface between weld and base metals. The $C_t$ versus time relations were obtained under various creep constant combinations and plastic constant combinations for weld and base metals, respectively. A unified $C_t$ versus time curve is obtained by normalizing $C_t$ with $C^*$ and t with $t_T$ for all the cases of material constant variations.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part I - Material constitutive modeling

  • Eui-Kyun Park;Ji-Su Kim;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4146-4158
    • /
    • 2023
  • This paper proposes a combined plastic and creep constitutive model of A533B1 pressure vessel steel to simulate progressive deformation of nuclear pressure vessels under severe accident conditions. To develop the model, recent tensile test data covering a wide range of temperatures (from RT to 1,100 ℃) and strain rates (from 0.001%/s to 1.0%/s) was used. Comparison with experimental data confirms that the proposed combined plastic and creep model can well reflect effects of temperature and strain rate on tensile behaviour up to failure. In the companion paper (Part II), the proposed model will be used to simulate OECD lower head failure (OLHF) test data.

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB) (적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측)

  • Hwang, Kee Tae;Seo, Dae Won;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L. (STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구)

  • 김수영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

Micro-Surface-Cracks Behavior of 304 Stainless Steel Under Creep-Fatigue Interaction at Elevated Temperature (고온하 304 스테인리스강의 크리프-피로상호작용하의 미소표면균열에 관한 파괴거동)

  • 서창민;이상돈;조일현
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1988
  • This paper deals with the micro-surface-cracks behavior on the unnotched smooth specimens of Type 304 stainless steel at $593^{\circ}C$ in air under creep and creep-fatigue conditions that have 10 mim and 1 min load holding times respectively. The behaviors of the micro-surface-cracks have been visualized by means of surface replica method and optical micro-photography. The quantitative characteristics of initiation, growth and coalescence of micro-surface-cracks have been investigated by observing and measuring the crack growth behaviors. some of the important results are as follows: Main crack initiates at grain boundary in the early stage(10 to 20%)of its life time and grows through coalescence and finally leads to fracture. The distribution of micro-surface-crack length, 2a, can be plotted against the composite Weibull distribution. The growth rate of the main crack can be plotted against the stress intensity factor, crack tip opering displacement and J integral.

  • PDF

A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature. (미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동)

  • Song, Samhong;Kang, Myungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

Evaluation of Healing Properties of Asphalt Mixtures (아스팔트 혼합물의 손상회복 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.69-76
    • /
    • 2005
  • While the repeated traffic loading accumulates the damage of asphalt pavement, the damage has being healed during rest periods. And then, this healing enhances the fatigue life of asphalt pavement. A method was developed to determine the healing rate of asphalt mixture in terms of recovered dissipated creep strain energy (DCSE) per unit time, and the healing properties of four different asphalt mixtures were evaluated. The test procedure consists of repeated loading test and periodical resilient modulus tests. A normalized healing rate in terms of $DCSE/DCSE_{applied}$ was defined to evaluate the healing properties independently of the amount of damage incurred in the mixture. From the test results, it was concluded that the healing rates of asphalt mixtures were increased exponentially as the temperature was increased and more affected by the structural characteristics of mixture such as asphalt content than the binder characteristics such as the polymer modification.

  • PDF