• 제목/요약/키워드: Creep properties

검색결과 540건 처리시간 0.022초

몬테카를로 모사에 의한 용접 계면에서의 크리프 균열성장 파손 확률 평가 (Evaluation of Creep Crack Growth Failure Probability at Weld Interface Using Monte Carlo Simulation)

  • 이진상;윤기봉
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.61-66
    • /
    • 2005
  • A probabilistic approach for evaluating failure risk is suggested in this paper. Probabilistic fracture analyses were performed for a pressurized pipe of a Cr-Mo steel reflecting variation of material properties at high temperature. A crack was assumed to be located along the weld fusion line. Probability density functions of major variables were determined by statistical analyses of material creep and creep crack growth data measured by the previous experimental studies by authors. Distributions of these variables were implemented in Monte Carlo simulation of this study. As a fracture parameter for characterizing growth of a fusion line crack between two materials with different creep properties, $C_t$ normalized with $C^*$ was employed. And the elapsed time was also normalized with tT, Resultingly, failure probability as a function of operating time was evaluated fur various cases. Conventional deterministic life assessment result was turned out to be conservative compared with that of probabilistic result. Sensitivity analysis for each input variable was conducted to understand the most influencing variable to the analysis results. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

PET 재활용 폴리머 콘크리트의 크리프 거동 예측 (The Prediction of Long-Term Creep Behavior of Recycled PET Polymer Concrete)

  • 조병완;태기호;권오혁
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.320-323
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET polymer concrete. The creep strain and specific on using the CaCO3 were less than using fly-ash. the creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

  • PDF

온도와 응력에 따른 폴레에틸렌(PE)의 크리프특성 (Creep Characteristic of the Polyethylene(PE) at Various Stresses and Temperatures)

  • 강석춘;이용원
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.99-104
    • /
    • 2009
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft as polymers or used as mechanical elements at high temperatures. One of the popular thermo-elastic plastics, Polyethylene(PE) which is used broadly for engineering purposes, as it has good properties and merits compared to other plastics, was studied for creep characteristic at various level of stresses and temperatures. From the experimental results, the creep limit of PE at room temperature is 75% of tensile strength. Also the creep limits decreased exponentially as the temperatures increased, up to 50% of the melting point. Also the secondary stage among the three creep stages was nonexistent nor was there any rupture failure which occurred for many metals.

응력과 온도에 따른 폴리카보네이트(PC)의 크리프특성 (Creep Characteristic of the Polycarbonate(PC) at Various Stresses and Temperatures)

  • 강석춘;이용원
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.78-85
    • /
    • 2010
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-elastic polymers, Polycarbonate(PC) which is used broadly for engineering polymer, as it has excellent mechanical and thermal properties compared to other polymers, was studied for creep characteristic at various level of stresses and temperatures. From the experimental results, the creep limit of PC at room temperature is 85 % of tensile strength. which is higher than PE (75%)at room temperature. Also the creep limits decreased exponentially as the temperatures increased, up to 50 % of the melting point($267^{\circ}C$). Also the first and third stage among the three creep stages was non-existent nor was there any rupture failure which occurred for many metals.

응력과 온도에 따른 아크릴(PMMA)의 크리프특성 (Creep Characteristic of the Polymethyl Methacrylate(PMMA) at Stresses and Temperatures)

  • 강석춘
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1403-1410
    • /
    • 2011
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-elastic polymers, Polymethyl methacrylate(PMMA) which is used broadly for engineering polymer, as it has excellent mechanical and thermal properties compared to other polymers, was studied for creep characteristic at various level of stresses and temperatures. From the experimental results, the creep limit of PMMA at room temperature is 85 % of tensile strength. which is higher than that of PE (75%)at room temperature. Also the creep limits decreased to nil linearly as the temperatures increased, up to $120^{\circ}C$ of the melting point($267^{\circ}C$). Also the first and third stage among the three creep stages were non-existent nor were there any rupture failure which occurred for many metals at high temperatures.

크리프 물성평가를 위한 구형압입 수치접근법 (A Numerical Approach to Spherical Indentation Techniques for Creep Property Evaluation)

  • 임동규;이진행;최영식;이형일
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1229-1237
    • /
    • 2013
  • 본 연구에서는 증분소성이론에 기초한 구형압입이론을 크리프 물성을 평가하기 위한 압입이론으로 확장했다. 먼저 크리프변형률 기울기가 일정한 지점을 유효 응력-변형률속도 최적 관측지점으로 선정했다. 구형압입시험 전산모사를 이용해 크리프 지수와 계수를 변화시켜 가면서 이에 따른 재료의 거동을 무차원 변수들 (${\xi}$, ${\psi}$)의 회귀식으로 표현해 크리프 물성평가를 위한 새로운 수치 접근법을 구축했다. 이를 토대로 구형압입시험으로부터 재료의 크리프지수 및 계수를 예측하는 물성평가 프로그램을 개발했다. 압입 하중-변위 곡선으로부터 크리프지수는 평균 1.5%, 크리프계수는 평균 1.0% 이내의 오차범위에서 물성치들을 얻을 수 있다.

Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

  • Kim, Woo-Gon;Park, Jae-Young;Ekaputra, I Made Wicaksana;Kim, Seon-Jin;Jang, Jinsung
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.581-591
    • /
    • 2017
  • Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at $600^{\circ}C$. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions.

1% Cr-Mo-V 강 회전자 축의 크리이프 특성과 수명예측에 관한 연구(I) (A Study on the Creep Properties and Life Prediction of 1% Cr-Mo-V Steel Roter Shaft(I))

  • 조판근;정순호;장윤석;이치우
    • 대한기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.519-528
    • /
    • 1986
  • 본 연구에서는 우선 1차적으로 한국중공업에서 제조한 실제의 터어빈 회전자 축에서 시편을 채취하여 화력발전소 터어빈의 작동 온도에서의 크리이프 거동을 실험 하고, Larson-Miller 법 및 Orr-sherby-Dorn 법에 의하여 수명을 예상하엿으며 열처리 조건의 변화에 따른 크리이프 특성 변화를 고찰하였다.

폴리머 콘크리트 샌드위치 패널의 휨크리이트 특성 (Flexural Creep Properties of Sandwich Panels with Polymer Concrete Facings)

  • 연규석;김광우;함형길;김관호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.55-59
    • /
    • 1995
  • This study was experimentally carried out to evaluate flexural creep properties of sandwich panels with polymer concrete facings. Specimen was made using polymer concrete facing and polyestyrene form core that has an excellent insulation capacity. Test results showed that, in 90 days of loading, the flexural creep was 1/292 under 40% of stresslevel and 1/780 under 60% stress level.

  • PDF

내열강 용접부의 크리프 평가 신기술 개발에 관한 연구 (A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.