• Title/Summary/Keyword: Creep model

Search Result 481, Processing Time 0.024 seconds

State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy (A17075합금의 고온 크리프 활성화에너지의 상태의존성)

  • 조용이;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The activation energy for high temperature creep is associated with stresses, temperatures, straians And the creep strain appears to be a function of a temperature, compensated time, namely $te^{-}$.DELTA.H/RT/, and the stress. In fact this functional relation appears to be isomorphic to material structure by x-ray analyses. Applying this functional relation, the dependance of activation energy for A17075 creep was investigated. The activation energy for creep is insensitive to stress, temperature, structure, and strain. And phenomenological model agrees with experimental creep data.

Elevated Temperature Deformation Behavior in an AZ31 Magnesium Alloy

  • Yang Kyoung-Tak;Kim Ho-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1209-1216
    • /
    • 2006
  • An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51 Tm) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (${\sigma}/ G < 4 {\times}10^{-3}$), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (${\sigma}/ G > 4 {\times}10^{-3}$), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level where n=3.5, the present results are in good agreement with the prediction of Fridel model.

Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor (초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가)

  • Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Hong, Sung-Deok;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.721-728
    • /
    • 2012
  • This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

A Study on the Consolidation and Creep Behaviors of Soft Foundations Reinforced by Geotextiles (토목기유(土木機維)로 보강(補強)된 연약지반(軟弱地盤)의 압밀(壓密) 및 Creep 거동(擧動)에 관한 연구(研究))

  • Chung, Hyung Sik;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.75-84
    • /
    • 1991
  • When we construct the earth structures such as embankments, on soft ground which are consisted of thick marine silty clay, the foundations deform due to consolidation and creep. For the stabilization of the earth structures constructed on soft foundations, we usually uses the mattress and they play an important role in increasing an ultimate bearing capacity by the dispersion of load of embankment. The purpose of this paper was to predict rationally a long term deformation of earth structures and to contribute to embankment design and maintenance. We determined a rheological model of marine clay from experimental data, and developed a computer program using the chosen model and found out the long term behavior of embankment. The results of this paper are as follows: 1. The developed program can analyze simultaneously consolidation and creep. 2. From the results of creep test, the rheological model of marine silty clay can be represented by the Vyalov model. 3. The displacement of embankment on reinforced foundation were smaller than those of the unreinforced foundation in showing the effects of geotextiles on foundation deformations.

  • PDF

Experimental Study on Visco-Plastic Characteristics of Silicate-Grouted Soil (물유리계 약액고결토의 점.소성특성에 관한 실험적 연구)

  • 정형식;유재일
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.53-62
    • /
    • 1988
  • When a ground soil is under the constant continuous stress less than the failure strength of that soil, its deformation, in some cases, will increase continuously as time goes on due to creep phenomena. Deformation of soil caused by creep behavior will appear in various types depending on the elastic, plastic, viscous properties of soil. Therefore in this study, visco-plastic characteristics of grouted soil was studied by analysing the result of uniaxial creep test on the grouted soil. As a result of this research, it was found that the rheological model of grouted soil can be decided as Vyalov model and the visco-plastic properties of grouted soil is influenced by the content of silicate in grout.

  • PDF

PREDICTION OF DIAMETRAL CREEP FOR PRESSURE TUBES OF A PRESSURIZED HEAVY WATER REACTOR USING DATA BASED MODELING

  • Lee, Jae-Yong;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.355-362
    • /
    • 2012
  • The aim of this study was to develop a bundle position-wise linear model (BPLM) to predict Pressure Tube (PT) diametral creep employing the previously measured PT diameters and operating conditions. There are twelve bundles in a fuel channel, and for each bundle a linear model was developed by using the dependent variables, such as the fast neutron fluences and the bundle coolant temperatures. The training data set was selected using the subtractive clustering method. The data of 39 channels that consist of 80 percent of a total of 49 measured channels from Units 2, 3, and 4 of the Wolsung nuclear plant in Korea were used to develop the BPLM. The data from the remaining 10 channels were used to test the developed BPLM. The BPLM was optimized by the maximum likelihood estimation method. The developed BPLM to predict PT diametral creep was verified using the operating data gathered from Units 2, 3, and 4. Two error components for the BPLM, which are the epistemic error and the aleatory error, were generated. The diametral creep prediction and two error components will be used for the generation of the regional overpower trip setpoint at the corresponding effective full power days. The root mean square (RMS) errors were also generated and compared to those from the current prediction method. The RMS errors were found to be less than the previous errors.

Establishment of analysis system and fast-access cloud-based database of concrete deformation

  • Liao, Wen-Cheng;Chern, Jenn-Chuan;Huang, Ho-Cheng;Liu, Ting-Kai;Chin, Wei-Yi
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.441-450
    • /
    • 2021
  • This study presents the first analysis system and fast-access cloud database for shrinkage and creep of concrete in the world, named "shrinkage and creep database in Taiwan", SCDT. SCDT not only has the most comprehensive experimental data, including NU, JSCE, Europe, and TW databases, but provides a design tool for researchers and engineers. It can further facilitate the development of prediction models for localized concrete. Users can obtain the shrinkage and creep curves based on their selected prediction models in SCDT. Comparisons of the predicted results of selected models and test results in the chosen database can be generated in seconds. One example of the development of basic creep prediction model in Taiwan based on model B4 by using SCDT to reflect concrete characteristics in Taiwan is also presented in this study. Users anywhere in the world can easily access SCDT to browse and upload data, receive predictive results, or develop predictive models.

A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials (나노재료 입계상의 소성변형에 대한 입계확산크립 모델)

  • 김형섭;오승탁;이재성
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

Creep and Recovery Properties of Mat-type Rice Seedlings (Mat 묘(苗)의 크리이프 및 회복특성(回復特性))

  • Huh, Y.K.;Yi, C.K.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • The mechanical and rheological properties of agricultural materials which influence the machine design or handling are not completely understood. Agricultural materials do not react in a purely elastic manner, and their responses when subjected to stress and strain appear a combination of elastic and viscous behavior. Many researchers have studied the mechanical and rheological properties of the various agricultural materials, but those properties are available mostly for foreign varieties of agricultural products. Rheological properties of rice seedlings become important to formulate the principles governing their mechanical behavior. The objectives of this study were to experimentally determine the creep and recovery behavior of rice seedlings of one japonica-type and one Indica x japonica hybrid in the transplanting age. The results of this study are summarized as follows; 1. The compression creep and recovery behavior of mat-type seedlings could be described by 4-element Burger's model. 2. The steady-state creep appeared at the stress larger than 0.8 MPa and the logarithmic creep appeared at the stress smaller than 0.8 MPa. 3. In the compression creep test of the rice seedlings, the instantaneous elastic modulus of Burger's model showed the range from 20 to 40 MPa. The higher value of absolute viscosity for the rice seedling explained that the rice seedlings were viscoelastic materials. 4. In the recovery test of the rice seedlings, there was a tendency that the higher permanent strain of all samples was observed under the smaller stress being appeared, and the larger permanent strain in Dongjin was observed than in Samkang.

  • PDF

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.