• Title/Summary/Keyword: Creep behavior

Search Result 591, Processing Time 0.027 seconds

Asymmetric Creep Behavior of Ceramics (세라믹의 비대칭 크리프 거동)

  • Lim, H.J.;Jung, J.W.;Han, D.B.;Kim, K.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3105-3112
    • /
    • 1996
  • Asymmetric creep behaviors of ceramics under high temperature were investigated. Based on the Norton's power-low creep equation, multidirectional creep equations were proposed for general geometric loading conditions. The proposed equations were implemented into finite element program (ABAQUS) to simulate creep behaviors of ceramics in complicated loading conditions. The calculated results were compared with experimental data for uniaxial compression of Si-SiC C-ring and flexure of Si-SiC and $Al_2O_3$ in the literature. The finite element results agreed well with experimental data when the principal stresses are smaller than the threshold stress for creep damage. A good agreement was also obtained for damage zone in Si-SiC bending creep specimen compared with experimental data.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Simplified analysis of creep for preloaded reconstituted soft alluvial soil from Famagusta Bay

  • Garoushi, Ali Hossien Basheer;Uygar, Eris
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-169
    • /
    • 2022
  • Preloading of soft clays is a common ground stabilization method for improvement of compressibility and the undrained shear strength. The waiting period under preload is a primary design criterion controlling the degree of improvement obtained. Upon unloading the overconsolidation attained with respect to actual loads defines the long term performance. This paper presents a laboratory study for investigation of creep behavior of Famagusta Bay alluvial soft soil preloaded under various effective stresses for analysis of long term performance based on the degree of overconsolidation. Traditional one-dimensional consolidation tests as well as modified creep tests are performed on reconstituted soft specimens. Compressibility parameters are precisely backcalculated using one dimensional consolidation theory and the coefficient of creep is determined using the traditional Cassagrande method as well as two modified methods based on log cycles of time and the inflection of the creep curve. The test results indicated that the long term creep can be successfully predicted considering the proposed method. The creep coefficients derived as part of this method can also be related to the recompression index (recompression index, swelling index) considering the results of the testing method adopted in this study.

Effect of Humidity Conditions on Bending Creep Performance of Finger-Jointed Woods

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.7-15
    • /
    • 2007
  • To evaluate the durability of finger-jointed woods according to change of humidity conditions, four types of finger-jointed woods glued with different kinds of adhesives and finger pitches were made with Sitka spruce, and the effect of humidity conditions on creep performances was investigated. The shape of creep curves differed among humidity conditions, and the inclination of creep curves was greatest in 85%RH, and lowest in 65%RH. Their creep curves showed a linear behavior beyond approximately one hour, regardless of humidity conditions. The A values of the creep curves fitted to power law increased with increasing relative humidity, whereas the A' values were in order of 30 > 85 > 65%RH unlike the A values. The initial deformation increased with increasing relative humidity, whereas the creep deformation unlike the initial deformation was in order of 85 > 30 > 65%RH, and it was found that the creep deformation of finger-jointed woods indicated the smaller amount in air-dry moisture content rather than in a low moisture content less than 30%RH. Finger-jointed woods with 6.8 mm (L) pitch had the greater creep amount than in those with 4.4 mm (S) pitch in all humidity conditions. The difference of creep amount between both adhesives in all humidity conditions was small. Relative creep at 240 hr was greatest as 62.2~71.9% in 85%RH, and the values indicated 2.1~2.6 times that of 30%RH and 3.0~3.6 times that of 65%RH and were equal or slightly greater than that of solid spruce.

Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep (천이크리프를 고려한 구형압입 크리프 물성평가법)

  • Lim, Dongkyu;Lee, Jin Haeng;Kim, Minsoo;Lee, Hyungyil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1339-1347
    • /
    • 2013
  • Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties considering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

Compressive Creep Behavior of Rice Starch Gels (쌀 전분 젤의 creep 특성)

  • Hong, Seok-In;Kim, Young-Sug;Choi, Dong-Won;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.165-170
    • /
    • 1992
  • The creep behavior of gels made with $30{\sim}45%$ gelatinized rice starch was measured over a wide range of temperature. Compressive creep curves of rice starch gels conformed to a six element mechanical model consisting of one Hookean, two Voigt and one Newtonian component. The creep compliance of gels decreased with increasing starch concentrations. Among viscoelastic constants of the mechanical model, elastic modulus was mainly influenced by the change of starch concentrations. The concentration-invariant compliance curve was obtained by reduction to 38% using reduction parameter $a_{c}$. The creep compliance curves of 45% starch gels increased with temperature, which indicated that rice starch gels became softer and less rigid with increasing temperature. When the compliance at $20^{\circ}C$ was set as a reference curve, creep compliance data for 45% gels at various temperature could be superimposed as a continuous smooth curve. The apparent activation energies of 45% rice starch gels calculated by the modified WLF equation were not intrinsic, but decreased as temperature increased.

  • PDF

A Study on Engineering Characteristics of Geogrids and the Applicability in fields (지오그리드의 공학적 특성 및 설계인자 적용성 평가에 관한 연구)

  • 신은철;김두환;신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.105-112
    • /
    • 1999
  • In recent the superior economic benefits and the convenience of installation increased the use of geosynthetics, especially geogrids with the effects of high tensile strength. In this study, various tests were conducted to determine the physical and chemical properties of geogrids which contains durability under various critical conditions, creep behavior and the stability for installation damage in fields. With analysis of test results, the partial and total safety factors were determined and presented the long term design strength of flexible geogrids.

  • PDF

Conditioned Viscoelastic - Characteristics of Human Aorta

  • Whang, Min-Cheol
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.164-166
    • /
    • 1996
  • Human aorta has viscoelastic behavior. The test of tissues such as aorta, skin, muscle, and ok. is required to consider visco effect on deformation behavior. Creep and slow recovery are main aspects of viscoelasticity of tissue engineering. Volumatric strain plays a important role in determine slow recovery of human arota. This study is to suggest the method avoiding viscous effect in tissue experiment The results shows the time scale when the specimen can be fully recovered from slow deformation. Also, this study observes the qualitative creep-effect on elastic strain in 1 minute at the same loading.

  • PDF

Time-Dependent Behavior of Partially Composite Beams (부분 강합성보의 시간의존적 거동해석)

  • 곽효경;서영재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.461-473
    • /
    • 2000
  • This paper deals with a numerical model for the time-dependent analysis of steel and concrete composite beams with partial shear connection. A linear partial interaction theory is adopted in formulation of structural slip behavior, and the effect of concrete creep and shrinkage are considered. The proposed model is effective in simulating the slip behavior, combined with concrete creep and shrinkage, of multi-span continuous composite beams. Finally, correlation studies and several parameter studies are conducted with the objective to establish the validity of the proposed model.

  • PDF