• Title/Summary/Keyword: Creep Test of Ti

Search Result 9, Processing Time 0.021 seconds

Creep Behavior Analysis of Pure Ti by Omega Method (Ti의 ${\Omega}$법을 이용한 고온 크리프 거동해석)

  • Cho, Ji-Hwa;Lee, Hen-Six;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.388-393
    • /
    • 2004
  • Creep behavior of Ti had been studied in a stress from 9.8 to 29.4 MPa and temperature rang from 873K to 973K with a special reference to tertiary creep. It was found that stress exponent of Ti was larger than that of the general pure metal and the compound metal. The relationship between true strain and strain rate in tertiary creep was appeared as the equation, $ln{\dot{e}}$ = $ln{\dot{e}}_{0}$ + ${\Omega}$ e Also, Apparent activation energy of was appeared as 274.92kJ/mol by using the equation ${\dot{\varepsilon}}_{0}$ = A ${\sigma }_{0}^{\ast_0}$ exp$(-Q_{0}/RT)$

  • PDF

Creep Life Prediction of Pure Ti by Monkman-Grant Method (Monkman-Grant법에 의한 순수 Ti의 크리프 수명예측)

  • Won, Bo-Youp;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.352-357
    • /
    • 2003
  • Creep tests for Titan were carned out using constant-load at $600^{\circ}C$, $650^{\circ}C$ and $700^{\circ}C$. Material constants necessary to predict creep life were acquired from the experimental creep data. And the applicability of Monkman-Grant(M-G) and modified M-G relationships was discussed. It was discovered the log-log plot of M-G relationships between the rupure time(tr) and he minimum creep rate(${\varepsilon}_m$) was conditional on test temperatures. The slop of m was 2.75 at $600^{\circ}C$ and m was 1.92 at $700^{\circ}C$. However; the log-log plot of modified M-G relationships between $t_r/\varepsilon_r$ and $\varepsilon_m$ was indpendent on stresses and temperatures. That is the slop of m' was almost 3.90 in all the data. Thus, change M-G relationships to creep life prediction could be vtilized more reasonably than that of M-G relationships for type Titan. It was divided that the constant slopes never theless of temperatures of practical stresses in the modified relationship were due to an intergranular break grown by wedge-type cauities.

  • PDF

A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 고상 확산접합에 관한 연구)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

Creep Behaviours of Glasses Rim Material Alloy (안경테소재 합금(Ti-6AI-4V)의 크리프 특성)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.248-253
    • /
    • 2003
  • Titanium alloy has widely been used as glasses rim material because it has high specific strength and also is light, harmless to men. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 13. And last, the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

  • PDF

Improvement of Microstructure and Creep Properties of Ti-6Al-4V alloy by Plasma Carburization (Ti-6Al-4V 합금의 미세조직 및 크리프 특성에 미치는 플라즈마 침탄 처리의 영향)

  • Park, Y.G.;Wey, M.Y.;Park, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical test. The plasma treated alloy formed a carburized layer of about $150{\mu}m$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. The steady-static creep behaviors of Ti-6Al-4V alloy, using the constant stress creep tester, were investigated over the temperature range of $510{\sim}550^{\circ}C$(0.42~0.44Tm) and the stress range of 200~275 MPa. Stress exponent(n) was decreased from 9.32 of non-treatment specimen to 8.95 of carburized, however, the activation energy(Q) increased from 238 to 250 kJ/mol with the same condition as indicated above. From the above results, it can be concluded that the static creep deformation for Ti-6Al-4V alloy was controlled by the dislocation climb over the ranges of the experimental conditions.

Creep Characteristics of Titanium Alloy(Ti-6Al-4V) at 0.3Tm (티타늄합금(Ti-6Al-4V)의 0.3Tm에서 크리프 특성)

  • Yoon Jongho;Hwang Kyungchoon;Woo Hyun-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.117-122
    • /
    • 2005
  • Titanium alloy has widely been used as material for glasses frame parts because it has high specific strength. It is also light and harmless to human body. However, we have little design data about the mechanical properties such as the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with four different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 2.5. Finally, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture and some dimples.

Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering (스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성)

  • Eun, Sang-Won;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

Influence of Various Oxide and Nonoxide Microfillers on the Thermomechanical Properties of Alumina Based Low-Cement-Castables (산화물 및 비산화물 Microfiller의 첨가가 저시멘트 알루미나 캐스타블의 특성에 미치는 영향)

  • 이승재;이상원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.977-988
    • /
    • 1995
  • Several oxide (ZrO2, Al2TiO5, reactive Al2O3) and nonoxide (SiC, Si3N4, "ALON" (5AlN.9Al2O3)) additives were used as a microfiller for alumina based LCC (Low-Cement-Castable). High temperature prooperties (HMOR, softening under load) and the phase changes of developed LCC on various sintering temperatures were examined. In addition, thermal shock test and corrosion test were accomplished. Based on these data the effects of each microfiller on the properties of LCC were established comparing to those of the commercial LCC with amorphous silica as a microfiller. The castables, containing reactive alumina, ZrO2 and "ALON" (5AlN.9Al2O3) as a first portion, exhibited considerably higher HMOR-values over 100$0^{\circ}C$, better creep behavior, and thermal shock resistance than those of castables with amorphous silica. The LCC with 5% Al2TiO5 showed no corrosion against molten aluminum.nst molten aluminum.

  • PDF

An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages (플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석)

  • Shin, Ki-Hoon;Kim, Hyoung-Tae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.