• Title/Summary/Keyword: Creep Rate

Search Result 328, Processing Time 0.021 seconds

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Sensitivity Analysis of Generalized Parameters on Concrete Creep Effects of Composite Section (합성단면의 콘크리트 크리프 효과에 대한 일반화 매개변수의 민감도 분석)

  • Yon, Jung-Heum;Kim, Eui-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.629-638
    • /
    • 2009
  • In this paper, the existing formulas of the step-by-step method were generalized for effective estimation of responses of complicated composite sections due to long-term deformation of concrete. The initial transformed section properties of the composite section were derived from material and section properties of concrete section and sections which confine the longterm deformation of concrete. The transformed section properties at each step were derived from the effective modulus of elasticity considered the creep coefficient variation. Improved formulas of the step-by-step method for generalized responses were derived by introducing 5 generalized parameters. The formulas can be more simplified by applying constant increment of creep coefficient at each step. The constant increment of creep coefficient at each step can also reduce computing time and make equal computing error of each step. The generalized responses for axial elastic strain of concrete section were most sensitive to the area rate of concrete section, and the ratio of the second moment of the confining section area was more sensitive than that of the concrete section. Those for elastic curvature of concrete section were most sensitive to the ratio of the second moment of concrete section area.

Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete (콘크리트 장기변형의 구속계수와 선압축력의 손실률)

  • 연정흠;주낙친
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2002
  • A restraint coefficient for creep and dry shrinkage deformation of concrete in a composite section was derived to calculate the residual stress, and an equation for the loss rate of the pre-compression force was proposed. The derived restraint coefficient was computed by using the transformed section properties for the age-adjusted effective modulus of elasticity. The long-term behavior of complicate composite sections could be analyzed easily with the restraint coefficient. The articles of the current design code was examined for PSC and steel composite sections. The dry shrinkage strains of $150 ~ 200$\times$10^{-6}$ for the computations of the statically indeterminate force and the expansion joint could be under-estimated for less restrained sections such as the reinforced concrete. The dry shrinkage strain of $180$\times$10^{-6}$ for the computation of residual stress in the steel composite section was unreasonably less value. The loss rate of 16.3% of the design code for the PSC composite section in this study was conservative for the long-term deformation of the ACI 205 but could not be used safely for that of the Eurocode 2. For pre-compressed concrete slab in the steel composite section, the loss rate of prestressed force with low strength reinforcement was much larger than that with high strength tendon. The loss rate of concrete pre-compression increased, while that of pre-tension decreased due to the restraint of the steel girder.

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.

A Study on Construction Method for Joints between Old and New Concrete Deck Slabs (콘크리트 교량 바닥판 신구접합부의 시공방안에 관한 연구)

  • Paek Nak Seung;Choi Young Chul;Cha Soo Won;Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.363-366
    • /
    • 2005
  • When widening or repairing concrete deck slab, there is a joint inevitably. However, joining-construction method have following problem, that is the additional stress in existing part of bridge resulting from the specific process of joining-construction and the difference of amount of shrinkage between new and existing bridge. On this study, compared shrinkage stress of the direct joining construction method with the indirect joining construction method, and concluded the proper substitution rate of expansion cement. The rate of replacement was proper at $10\%$. but more than $15\%$, concrete had excessive expansion and weeker compressive strength. The time of placing closure concrete, considering the shinkage stresses and creep, was suitable in $45\~60$ days after placing the new concrete deck slab.

  • PDF

Development of experimental apparatus to evaluate frost heave and pressure (토사의 동상량 및 동상력 측정을 위한 실내 실험장치 개발)

  • Ko, Sung-Gyu;Choi, Chang-Ho;Chae, Jong-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.131-137
    • /
    • 2010
  • `Frost heave' is volumetric extension behavior of soil due to freezing. It could have a bad effect to foundations of infrastructures like building, road, railroad and bridge. Therefore, it is considered as a primary design parameter with 'adfreeze bond' and 'creep deformation' for foundation design in cold region. In some countries, studies for analyzing frost heave in many ways have being performed, however, only a few studies for evaluating frost susceptibility of soils by measuring frost heave rate of frozen soils in Korea. For analyzing frost heave as a foundation design parameter, both frost heaving rate and heaving pressure are should be addressed in study. Hence, in this study, development of experimental apparatus to evaluate frost heave and pressure is suggested.

  • PDF

The Behaviors of the Material Parameters Affecting PCI Induced-Fuel Failure (핵연료봉의 PCI파손에 영향을 미치는 인자들의 거동분석)

  • Sim, Ki-Seob;Woan Hwang;Sohn, Dong-Seong;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.241-245
    • /
    • 1988
  • It is very important to investigate the behaviors of the material parameters governing PCI fuel failure during power ramp because PCI fuel failure is considered to be related to the operations limits of power reactors. In this study, the behavior characteristics of the material parameters such as hoop stress, hoop strain, ridge height, creep strain rate and strain energy in cladding were studied as a function of the operating parameters such as power shock and ramp rate. The FEMAXI-IV fuel rod performance analysis code was used for this study.

  • PDF

Wind-Tunnel Simulation of Windbreaks to Control Windblown Dusts in the Atmospheric Boundary layer (대기 경계층내에서 바람에 의해 발생되는 부유 물질 제어를 위한 Windbreaks의 풍동 시뮬레이션)

  • Kang, Kun
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.29-40
    • /
    • 1995
  • Transport rate of windblown dusts such as soil, sand, snow is proportionate to $U*_^3 and U_*$, friction velocity, approximately to flow velocity of ink Therefore, through measurement and the flow velocity of wind, it turned out that, considering different velocity distributions caused by downstream distance and porosity percent, windbreaks with appropriate porosity rate to the Protection area should be chosen for the optimal fence effect. In the economic respects better are fences with gap of 20%~30%. Among the windbreaks to have the optimal fence effect.

  • PDF

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles (알루미나입자로 강화된 알루미늄합금 복합재료의 미세조직과 기계적 성질)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.