• 제목/요약/키워드: Creep Deflection

검색결과 76건 처리시간 0.023초

상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동 (Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH)

  • 홍순일
    • 임산에너지
    • /
    • 제18권2호
    • /
    • pp.84-91
    • /
    • 1999
  • The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.

  • PDF

Studies on Evaluation for Long-Term Structural Performance of Pinus densiflora Sieb. et Zucc. (I) -Shear Creep and Mechano-Sorptive Behavior of Drift Pin Jointed Lumber-

  • Hong, Soon-Il;Park, Jun-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권5호
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to evaluate the mechano-sorptive deflection of shear creep of drift pin jointed solid wood. Specimens were the solid wood of Pinus densiflora. The joint was composed with steel plate and drift pin, 85mm in length and 10mm in diameter. The creep tests were conducted under the constant loads in an variable environment. Five different shearing loads were applied parallel to the grain of specimens. The shearing loads applied were 170, 340, 510, 680 and 850 kgf. The stress levels were 10, 20, and 30, 40 and 50% of the bearing strength obtained from the tension-type lateral strength test. The creep tests for specimens were carried out for 10300 hours. A few general conclusions could be drawn from this study: The mechano-sorptive deflection (${\delta}$ ms) is defined as ${\delta}\;ms={\delta}\;t-({\delta}\;c+{\delta}\;sh)-{\delta}\;o$, where ${\delta}$ t is the total deflection, ${\delta}$ c is the pure creep, ${\delta}$ sh is shrinkage-swelling behavior, and ${\delta}$ o is the initial deflection. Changes of relative humidity may cause more severe creep deflection than those of constant humidity, especially during the drying process. The mechano-sorptive behaviors of specimens, except the effects of shrinkage and swelling, gradually increased with increasing time. The deflection is increased in desorption process and recovered in adsorption process. The deflections of drift pin jointed solid wood under different loads showed almost same tendency in all specimens. Although the creep deflection tendencies of each series are very similar, the specimens subjected to a large shearing load exhibit large creep deflections in the desorption process than do those to the small shearing load specimens.

Effects of cyclic loading on the long-term deflection of prestressed concrete beams

  • Zhang, Lihai;Mendis, Priyan;Hon, Wong Chon;Fragomeni, Sam;Lam, Nelson;Song, Yilun
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.739-754
    • /
    • 2013
  • Creep and shrinkage have pronounced effects on the long-term deflection of prestressed concrete members. Under repeated loading, the rate of creep in prestressed concrete members is often accelerated. In this paper, an iterative computational procedure based on the well known Model B3 for creep and shrinkage was developed to predict the time-dependent deflection of partially prestressed concrete members. The developed model was validated using the experimental observed deflection behavior of a simply supported partially prestressed concrete beam under repeated loading. The validated model was then employed to make predictions of the long-term deflection of the prestressed beams under a variety of conditions (e.g., water cement ratio, relatively humidity and time at drying). The simulation results demonstrate that ignoring creep and shrinkage could lead to significant underestimation of the long-term deflection of a prestressed concrete member. The model will prove useful in reducing the long-term deflection of the prestressed concrete members via the optimal selection of a concrete mix and prestressing forces.

중수로 압력관의 크리프 처짐 해석 기법 및 프로그램 개발 (Development of Creep Deflection Analysis Method and Program for CANDU Pressure Tube)

  • 심도준;허남수;박보규;장윤석;김윤재;김영진;정현규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.66-71
    • /
    • 2004
  • Estimation of the CANDU pressure tube deflection is important since the deflection may cause significant structural failure due to hydrogen diffusion and blister. However, there is no appropriate engineering model to estimate it exactly. The purpose of this paper is to propose a new analysis method and program to resolve this issue. For development of proper analysis method, a series of finite element analyses has been carried under elastic-creep condition. In addition, for effective estimation of the creep deflection, an analysis program named PC-DAS was developed based on the proposed method. Comparison of simple case study results with corresponding reference ones showed good agreement. Therefore, the proposed method and program can be utilized as one of valuable toolkit for integrity assessment of CANDU pressure tube.

  • PDF

Bending Creep of Glulam and Bolted Glulam under Changing Relative Humidity

  • PARK, Junchul;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.676-684
    • /
    • 2020
  • This study was carried out in order to evaluate the bending creep deflection of glulams and bolted glulams beam-to-beam connection with steel-gusset plates and bolts under changing relative humidity. The two types of glulam beams (130 mm in width, 175 mm in thickness, and 3000 mm in length) used in this study were made from domestic larch and composed of seven layers. The gussets were made of 8-mm-thick steel plates. Creep testing was conducted under constant loads in an uncontrolled environment. The test was carried out in a room that was well ventilated through a window. The creep test specimens were loaded for 33,000 hours. A bending creep test for the glulams was conducted through four-point loading. The applied stresses were 20% and 30% of the MOR in the static bending test for the glulam and bolted glulam, respectively. After 33,000 hours, the creep deflection of the glulam at a 20% stress level increased by 39% to 99%, while the creep deflection of the glulam at a 30% stress level increased by 27% to 67%, as compared with instantaneous elastic deflection. The relative creep increased during autumn and winter, and recovered during spring and summer. The relative creep of the bolted glulams was changed abruptly by loading up to 5,000 hours, but stabilized after 5,000 hours, and then gradually increased until 33,000 hours. The relative creep of the bolted glulam increased 2.11 times on average after 33,000 hours.

굽힘 모멘트가 작용하는 실린더의 비선형 처짐량 예측을 위한 새로운 공학적 계산식 (New Engineering Methods for Non-Linear Deflection Estimation of Cylinder under Bending)

  • 허남수;김윤재;김영진;정현규;이동훈
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.311-317
    • /
    • 2004
  • This paper proposes engineering estimation equations for the maximum deflection of a cylinder subject to bending under elastic-plastic and elastic-creep conditions. Being based on the reference stress approach, the proposed equations are simple to use and can accommodate general tensile and creep behaviours. Validation against detailed 3-D FE results using actual stress-strain data and realistic creep-deformation data shows excellent agreement, which provides confidence in the use of the proposed equation. Based on the proposed equations, together with information on in-service inspection data, discussion is given how to estimate future time-dependent and time-independent deflection of the CANDU pressure tube. Thus the present result would be valuable information for integrity assessment of the CANDU pressure tube.

Effect of GGBFS on time-dependent deflection of RC beams

  • Shariq, M.;Abba, H.;Prasad, J.
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.51-58
    • /
    • 2017
  • The paper presents the experimental investigations for studying the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent deflection of reinforced concrete (RC) beams due to creep and shrinkage. The RC beams were reinforced with 2-10 mm bars at tension side and subjected to constant sustained two-point loading for the period of 150 days. The amount of cement replacement by GGBFS was varied from 0 to 60% with an increment of 20%. The total deflection was measured at different ages of up to 150 days under sustained loads. The experiments revealed that the time-dependent deflection of the reinforced concrete RC beams containing GGBFS was higher than that of plain concrete RC beams. At 150 days, the average creep and shrinkage deflection of RC beams containing 20%, 40% and 60% GGBFS was 1.25, 1.45 and 1.75 times higher than the plain concrete beams. A new model, which is an extension of authors' earlier model, is proposed to incorporate the effect of GGBFS content in predicting the long-term deflection of RC beams. Besides validating the new model with the current data with higher percentage of tension reinforcement, it was also used to predict the authors' earlier data containing lesser percentage of tension reinforcement with reasonable accuracy.

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

철근콘크리트 장주 교각의 시간에 따른 거동 (Long-Term Behaviors of Reinforced Concrete Pier Structures Considering Long Column Effects)

  • 정현수;김수만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.69-72
    • /
    • 2005
  • For reinforced concrete column under sustained loads, the member suffers additional lateral deflection due to creep. This deflection leads to additional bending in the member, which in turn causes the column to deflect still further. Therefore the secondary moment due to additional deflection causes an increase in primary moment and the strength of column is reduced. And also creep buckling may occur. On this study, nonlinear analysis of reinforced concrete long column including crack effects is carried out and then the strength of long column is revaluated.

  • PDF

The Bending Analysis of Three Phase Polymer Composite Plate Reinforced by Glass Fiber and Titanium Oxide Particles Including Creep Effect

  • Duc, Nguyen Dinh;Minh, Dinh Khac;VanThu, Pham
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.360-365
    • /
    • 2010
  • Three phase composite materials are widely used in the shipbuilding industry. When reinforced with fiber and particle, the physical and mechanical properties of polymer composite materials are improved. This paper presents the bending analysis of a three phase composite plate with an epoxy matrix, reinforced glass fiber and titanium oxide particles including creep effect when shear stress is taken into account. The obtained results indicate that creep strains lead to compression in the composite material. Introducing reinforced fibers and particles reduces the plate's deflection, when increasing the stretch coefficient allows the calculation of creep deflection during a long loading period.