• Title/Summary/Keyword: Creep Activation Energy

Search Result 64, Processing Time 0.029 seconds

High Temperature Creep Strength of Mg-Nd-Zr-Zn Alloy in Sand Castings (사형주조한 Mg-Nd-Zr-Zn합금의 고온 크리이프강도)

  • Kang, Dae-Min;Park, Kyung-Do;Park, Ji-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.83-88
    • /
    • 2011
  • Magnesium alloys have been focussed for the applications for lightweight of vehicle and electronics due to their high strength, low specific density and good damping capacity. This paper deals with the creep strength of Mg-Nd-Zr-Zn alloy. For the alloy, pure magnesium(99.9%) was melt with atmosphere of $0.3%SF_6$ and $25%CO_2$. After melting, 0.3% of zinc was inserted to stir for 10min at elevated temperature of $770^{\circ}C$. Master alloys of Mg-15%Nd and Mg-15%Zr were stirred in furnace. The creep tests were performed to obtain creep rate and rupture in the temperature range of 200 to $220^{\circ}C$ and 280 to $310^{\circ}C$ at an applied stress of 156 to 172MPa and 78 to 94MPa, respectively. The deformation mechanism was predicted dislocation climb from measured apparent activation energy and stress exponent. Also the increaser the temperature and stress the lower the stress exponent and activation energy. Finally, LMP parameter gives good information for the predicted creep rupture life.

A Study on Stress Analysis of Small Punch-Creep Test and Its Experimental Correlations with Uniaxial-Creep Test (소형펀치-크리프 시험에 대한 응력해석과 일축 크리프 시험과의 상관성에 관한 연구)

  • Lee, Song-In;Baek, Seoung-Se;Kwon, Il-Hyun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2565-2573
    • /
    • 2002
  • A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9Cr1MoVNb steel. It was shown that the initial maximum equivalent stress, ${\sigma}_{eq{\cdot}max}$ from FE analysis was correlated with steady-state equivalent creep strain rate, ${\epsilon}_{qf-ss'}$ rupture time, $t_r$, activation energy, Q and Larson-Miller Parameter, LMP during SP-creep deformation. The simple correlation laws, ${\sigma}_{sp}-{\sigma}_{TEN}$, $P_{sp}-{\sigma}_{TEN}\; and\; Q_{sp}-Q_{TEN}$ adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at $650^{\circ}C$ as follows : $Q_{SP-P}\;{\risingdotseq}\;1.37 \;Q_{TEN},\; Q_{SP-{\sigma}}{\risingdotseq}1.53\; Q_{TEN}$.

The Characteristics of Creep for Two-Phase Ti-6Al-4V Alloy (Ti-6Al-4V 2상 합금의 크리프 특성(特性))

  • Park, Yong-Gwon;Choi, Jae-Ha;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.4
    • /
    • pp.172-177
    • /
    • 2002
  • The steady-static creep behaviors of Ti-6Al-4V alloy, using the constant stress creep tester, were investigated over the temperature range of $510{\sim}550^{\circ}C$(0.42~0.44Tm) and the stress range of 200~275 MPa($20.41{\sim}28.06kg/mm^2$). The stress exponents(n) for the static creep deformation of this alloy were 9.85, 9.35, 9.24 and 8.85 at the temperature of 510, 525, 535 and $550^{\circ}C$, respectively. The stress exponent(n) decreased with increasing the temperature and became close to about 5. The apparent activation energies(Q) for the static creep deformation were 254.4, 241.8, 234.4 and 221.9 kJ/mole for the stress of 200, 225, 250 and 275MPa, respectively. The activation energy(Q) decreased with increasing the stress. From the above results, it can be concluded that the static creep deformation for Ti-6Al-4V alloy was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller Parameter(P) for the crept specimens of Ti-6Al-4V alloy under the static creep conditions was obtained as $P=(T+460)({\log}\;t_r+21)$. The failure plane observed by SEM showed up dimple phenomenon at all range.

A Study on the Creep-Fracture Behavior under High Temperature (고온상태에서의 크리이프 파단거동에 관한 연구)

  • Kang, Dae-Min;Gu, Yang;Baek, Nam-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1986
  • Modern technological progress demands the use of materials at high temperature and high pressure. One of the most critical factors in considering such applications-perhaps the most critical one-is creep behavior. In this study the activation energy for the creep rupture (Qf) and the stress dependence of rupture time (n') have been determined during creep of Al 7075 alloy eve, the temporature range of $200^{\circ}C to 500^{\circ}C$ and stress range of 0.64 kgf/$\textrm{mm}^2$ to 9.55 kgf/$\textrm{mm}^2$, respectively, in order to investigate the creep-rupture property. Constant load creep tests were carried out in the enperiment At around the temperature $210^{\circ}C~390^{\circ}C$ and the stress level 1.53~9.55(kgf/$\textrm{mm}^2$), the stress dependence of rupture time(n') had the value of 6.6~6.78 but at 50$0^{\circ}C$, the value of 1.3. Besides at around the temperature of $200^{\circ}C~500^{\circ}C$ and under the stress level of 0.89~8.51 (kgf/$\textrm{mm}^2$), the activation energy for the creepprupture (Qf) was nearly equal to that of the volume self diffusion of pure aluminum (34Kca1/mo1e)

  • PDF

Creep characteristic of Mg alloy at high temperature (고온에서 마그네슘 합금의 크리이프 특성)

  • An, Jung-O;Park, Kyong-Do;Kwak, Jae-Seob;Kang, Dae-Min
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF

Creep Properties of Squeeze Infiltrated AS52 Mg/Al18B4O33w Composite (용탕가압침투 AS52 Mg/Al18B4O33w 복합재료의 크리프 특성)

  • Choi, Kye-Won;Park, Yong-Ha;Park, Bong-Gyu;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.412-419
    • /
    • 2008
  • Creep behavior of the squeeze infiltrated AS52 Mg matrix composites reinforced with 15 vol% of aluminum borate whiskers($Al_{18}B_4O_{33}w$) fabricated squeeze infiltration method was investigated. Microstructure of the composites was observed as uniformly distributed reinforcement in the matrix without any particular defects of casting pores etc.. Creep test was carried out at the temperature of 150 and $200^{\circ}C$ under the applied stress range of 60~120 MPa. The creep resistance of the composite was significantly improved comparing with the unreinforced AS52 Mg alloy. The creep behavior of composites might be interpreted with the substructure invariant model successfully for the composite. Threshold stress of the composite exist for the creep deformation of the composite. The analysis of the creep behavior of the composite with threshold stress indicated that creep deformation was controlled by the lattice diffusion process of AS52 Mg matrix at given effective stresses and temperatures. Activation energy was also calculated to check lattice diffusion controlled creep behavior of the composite.

Electoless Ni Plating on Alumina Powder to Application of MCFC Anode Material (MCFC anode 대체 전극 개발을 위한 분말 알루미나 상의 무전해 Ni 도금 연구)

  • Kim, Ki-Hyun;Cho, Kye-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.131-137
    • /
    • 2007
  • The typical MCFC (molten carbonate fuel cell) anode is made of Ni-10%Cr alloy. The work of this paper is focused concerning long life of anode because Ni-10% Cr anode is suffering from sintering and creep behavior during cell operation. Therefore, Ni-coated Alumina powder($20{\mu}m$) was developed by electroless nickel plating. Optimum condition of electroless nickel coation on $20{\mu}m$ alumina is as follows: pH 11.7, temperature $65{\sim}80^{\circ}C$, powder amount $100cm^2/l$. The deposition rate for Ni-electroless plating was as a function of temperature and activation energy was evaluated by Arrhenius Equation thereby activation energy calculated slope of experimental data as 117.6 kJ/mol, frequency factor(A) was $6.28{\times}10^{18}hr^{-1}$, respectively.

Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating (복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성)

  • Park, Yong-Gwon;Park, Jung-Ung;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

A Study on the Creep Behavior of AlSl 420F Stainless Steel (AlSl 420F 스테인리스강의 Creep 거동)

  • Park, Yong Gwon;Yoon, Byoung Joo;Choi, Jae Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.383-390
    • /
    • 2000
  • The static creep behaviour of AlSl 420F stainless steel was investigated over the temperature range of $540{\sim}585^{\circ}C$ and the stress range of $13{\sim}19kg/mm^2$ (127.4~186.2MPa). Constant stress creep tests were carried out in the experiment. Measured stress exponent, n, for the creep deformation of the alloy under the given conditions was found to vary at the range of 9.59, 9.15, 8.78, and 8.53 for the temperature of 540, 555, 570, and $585^{\circ}C$ respectively. The activation energy, Qc, for the creep deformation was 106.42, 102.58,97.81, and 94.58 kcal/mole for the stress of 13, 15, 17, and $19kg/mm^2$, respectively. Lason-Miller parameter, P, for the crept specimens for AlSl 420F stainless steel was measured as $P=T(log\;t_T+21)$. The empirical static creep rate obtained by the regression analysis was as follows. $${\varepsilon}={\exp}[(3.79{\times}10^{-2}{\sigma}+2.722)T-3.0747{\sigma}+28.109]{\times}{\sigma}^{(-2.367{\times}10^{-2}T+22.33)}{\exp}\left[-\frac{(-2.015{\sigma}+132.580){\times}10^3}{RT}\right]$$ The failure plane were observed, intergranular fracture was dominated by r (round) type crack over the experimental range.

  • PDF