• Title/Summary/Keyword: Credit Risks

Search Result 79, Processing Time 0.026 seconds

Factors Affecting Liquidity Risks of Joint Stock Commercial Banks in Vietnam

  • NGUYEN, Hoang Chung
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.197-212
    • /
    • 2022
  • The study uses the audited financial statements of 26 Vietnamese commercial banks listed on the Ho Chi Minh City Stock Exchange (HOSE) and Hanoi Stock Exchange (HOSE) during the 2008-2018 period to estimate the system GMM model, which provides empirical evidence on the effect of the variables of customer deposit to total assets (DEPO) ratio, loan to assets (LTA) ratio, liquidity of commercial banks (LIQ), credit development (CRD) ratio, external funding (EFD) ratio, and credit loss provision (LLP) ratio on liquidity risk. The study confirms that commercial banks' internal factors play the most important role, and there is no empirical evidence on macro variables that affect liquidity risk. Finally, in accordance with the theoretical framework, the study uses an estimation method with the R language and the bootstrap methodology to give empirical proof of the nonlinear correlation and U-shaped graph between commercial bank size and liquidity risk. The importance of commercial bank size in absorbing and moderating the effects of liquidity shocks is demonstrated, however, excessive growth in commercial bank size would increase liquidity risk in commercial bank operations.

A Case Study on Credit Analysis System in P2P: 8Percent, Lendit, Honest Fund (P2P 플랫폼에서의 대출자 신용분석 사례연구: 8퍼센트, 렌딧, 어니스트 펀드)

  • Choi, Su Man;Jun, Dong Hwa;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.229-247
    • /
    • 2020
  • In the remarkable growth of P2P financial platform in the field of knowledge management, only companies with big data and machine learning technologies are surviving in fierce competition. The ability to analyze borrowers' credit is most important, and platform companies are also recognizing this capability as the most important business asset, so they are building a credit evaluation system based on artificial intelligence. Nonetheless, online P2P platform providers that offer related services only act as intermediaries to apply for investors and borrowers, and all the risks associated with the investments are attributable to investors. For investors, the only way to verify the safety of investment products depends on the reputation of P2P companies from newspaper and online website. Time series information such as delinquency rate is not enough to evaluate the early stage of Korean P2P makers' credit analysis capability. This study examines the credit analysis procedure of P2P loan platform using artificial intelligence through the case analysis method for well known the top three companies that are focusing on the credit lending market and the kinds of information data to use. Through this, we will improve the understanding of credit analysis techniques through artificial intelligence, and try to examine limitations of credit analysis methods through artificial intelligence.

Risk Assessment and Decision-Making of a Listed Enterprise's L/C Settlement Based on Fuzzy Probability and Bayesian Game Theory

  • Cheng, Zhang;Huang, Nanni
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.318-328
    • /
    • 2020
  • Letter of Credit (L/C) is currently a very popular international settlement method frequently used in international trade processes amongst countries around the globe. Compared with other international settlement methods, however, L/C has some obvious shortcomings. Firstly, it is not easy to use due to the sophisticated processes its usage involves. Secondly, it is sometimes accompanied by a few risks and some uncertainty. Thus, highly efficient methods need to be used to assess and control these risks. To begin with, FAHP and KMV methods are used to resolve the problem of incomplete information associated with L/C and then, on this basis, Bayesian game theory is used in order to make more scientific and reasonable decisions with respect to international trade.

Bankruptcy Prediction with Explainable Artificial Intelligence for Early-Stage Business Models

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2023
  • Bankruptcy is a significant risk for start-up companies, but with the help of cutting-edge artificial intelligence technology, we can now predict bankruptcy with detailed explanations. In this paper, we implemented the Category Boosting algorithm following data cleaning and editing using OpenRefine. We further explained our model using the Shapash library, incorporating domain knowledge. By leveraging the 5C's credit domain knowledge, financial analysts in banks or investors can utilize the detailed results provided by our model to enhance their decision-making processes, even without extensive knowledge about AI. This empowers investors to identify potential bankruptcy risks in their business models, enabling them to make necessary improvements or reconsider their ventures before proceeding. As a result, our model serves as a "glass-box" model, allowing end-users to understand which specific financial indicators contribute to the prediction of bankruptcy. This transparency enhances trust and provides valuable insights for decision-makers in mitigating bankruptcy risks.

A Study on Effects of Corporate Governance Information on Credit Financial Ratings (기업지배구조정보가 신용재무평점에 미치는 영향)

  • Kim, Dong-Young;Kim, Dong-Il;Seo, Byoung-Woo
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • If the watchdog role of good corporate governance, corporate executives and reduce agency costs and information asymmetries. Corporate governance score higher because enterprise internal control systems and financial reporting system is well equipped with the company management is enabled and corporate performance is higher because the high financial credit rating. Under these assumptions and hypotheses set up this study corporate governance (CGI) has been studied demonstrated how the financial impact on the credit rating (CFR). Findings,

    relevant corporate governance (CGI) and financial credit rating was found to significantly affect the positive (+), Regression coefficient code is expected code of positive (+), the value

    indicated by the value of all positive. The results of corporate governance (CGI) has showed excellent results, such as the more predictable will increase the credit score financial rating. The results of this study will have more CGI-credit financial rating the greater good. This study might be expected to provide a useful guide that corporate social responsibility, the company with a good governance and oversight systems enable to to get a higher credit rating in practice and research.

Risk Evaluation of the Project Finance for Overseas Independent Power Projects Using a Fuzzy Multi-Criteria Decision-Making Analysis (퍼지 다기준 의사결정분석을 통한 해외 독립발전사업 사업금융 리스크 분석)

  • Hur, Kyong-Goo;Kim, Joo-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.574-590
    • /
    • 2017
  • The purpose of this paper is the provision of a decision-making tool for developers to identify the project risks for under-consideration overseas independent power projects (IPPs), and to analyze the priority and importance weights of the risks through the employment of a fuzzy multi-criteria decision-making (MCDM) approach. A fuzzy MCDM is the calculation method for which the imprecision of each respondent's unique opinion is considered. Through the extensive literature surveys that were conducted for this paper, eight major project finance (PF) risks have been derived credit risk, completion risk, market risk, fuel risk, operating risk, financial risk, environmental risk, and force majeure. The empirical results show that the market risk is the most important risk factor in terms of overseas IPPs, thereby confirming that the long-term power purchase agreement (PPA) guarantee of the host country is one of the most important corresponding factors for the PF.

Financial and Economic Risk Prevention and Countermeasures Based on Big Data and Internet of Things

  • Songyan Liu;Pengfei Liu;Hecheng Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.391-398
    • /
    • 2024
  • Given the further promotion of economic globalization, China's financial market has also expanded. However, at present, this market faces substantial risks. The main financial and economic risks in China are in the areas of policy, credit, exchange rates, accounting, and interest rates. The current status of China's financial market is as follows: insufficient attention from upper management; insufficient innovation in the development of the financial economy; and lack of a sound financial and economic risk protection system. To further understand the current situation of China's financial market, we conducted a questionnaire survey on the financial market and reached the following conclusions. A comprehensive enterprise questionnaire from the government's perspective, the enterprise's perspective and the individual's perspective showed that the following problems exist in the financial and economic risk prevention aspects of big data and Internet of Things in China. The political system at the country's grassroots level is not comprehensive enough. The legal regulatory system is not comprehensive enough, leading to serious incidents of loan fraud. The top management of enterprises does not pay enough attention to financial risk prevention. Therefore, we constructed a financial and economic risk prevention model based on big data and Internet of Things that has effective preventive capabilities for both enterprises and individuals. The concept reflected in the model is to obtain data through Internet of Things, use big data for screening, and then pass these data to the big data analysis system at the grassroots level for analysis. The data initially screened as big data are analyzed in depth, and we obtain the original data that can be used to make decisions. Finally, we put forward the corresponding opinions, and their main contents represent the following points: the key is to build a sound national financial and economic risk prevention and assessment system, the guarantee is to strengthen the supervision of national financial risks, and the purpose is to promote the marketization of financial interest rates.

Determinants of IPO Failure Risk and Price Response in Kosdaq (코스닥 상장 시 실패위험 결정요인과 주가반응에 관한 연구)

  • Oh, Sung-Bae;Nam, Sam-Hyun;Yi, Hwa-Deuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.5 no.4
    • /
    • pp.1-34
    • /
    • 2010
  • Recently, failure rates of Kosdaq IPO firms are increasing and their survival rates tend to be very low, and when these firms do fail, often times backed by a number of governmental financial supports, they may inflict severe financial damage to investors, let alone economy as a whole. To ensure investors' confidence in Kosdaq and foster promising and healthy businesses, it is necessary to precisely assess their intrinsic values and survivability. This study investigates what contributed to the failure of IPO firms and analyzed how these elements are factored into corresponding firms' stock returns. Failure risks are assessed at the time of IPO. This paper considers factors reflecting IPO characteristics, a firm's underwriter prestige, auditor's quality, IPO offer price, firm's age, and IPO proceeds. The study further went on to examine how, if at all, these failure risks involved during IPO led to post-IPO stock prices. Sample firms used in this study include 98 Kosdaq firms that have failed and 569 healthy firms that are classified into the same business categories, and Logit models are used in estimate the probability of failure. Empirical results indicate that auditor's quality, IPO offer price, firm's age, and IPO proceeds shown significant relevance to failure risks at the time of IPO. Of other variables, firm's size and ROA, previously deemed significantly related to failure risks, in fact do not show significant relevance to those risks, whereas financial leverage does. This illustrates the efficacy of a model that appropriately reflects the attributes of IPO firms. Also, even though R&D expenditures were believed to be value relevant by previous studies, this study reveals that R&D is not a significant factor related to failure risks. In examing the relation between failure risks and stock prices, this study finds that failure risks are negatively related to 1 or 2 year size-adjusted abnormal returns after IPO. The results of this study may provide useful knowledge for government regulatory officials in contemplating pertinent policy and for credit analysts in their proper evaluation of a firm's credit standing.

  • PDF

An Analysis on Consumer Characteristics and Determinants to Goods Purchase Decisions According to Consumer Characteristics in Cable TV Home-Shopping (Cable TV 홈쇼핑 이용 소비자의 특성 및 소비자 특성별 상품구매 결정요인 분석)

  • 김영숙;심미영
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.4
    • /
    • pp.85-103
    • /
    • 2002
  • The purpose of this study is to examine determinant to purchase decisions by consumers using the home shopping of cable TV. For the purpose accomplishment, this researcher surveyed demographic characteristics of cable TV users to determine what differences in types of goods purchased by the users were made in accordance with the characteristics. Findings from the study may be reflected in bisiness policies seeking the fulfillment of consumer needs, and be used as a basic information for the establishment of consumer policies pursuing increased qualities of consumption life by providing information on goods shown through the of home shopping on cable TV. The result of the study can be summarized as follow. First, purchased goods were greatly different in their types depending on demographic characteristics of consumers such as gender, marital status, age, educational backgrounds, income and jobs. Second, experiential characteristics of cable TV users including holding or non-holding credit cards, main channels used, the main time of watching cable TV and purchase frequency per year contributed to differences in types of purchased goods. Third, factors influencing purchase decisions were somewhat different according to types of goods. However, previous purchase experiences were most influential irrespective of the types. The result as described so far suggests that previous purchase experiences by consumers raised their chances of repurchase by removing possible risks perceived by consumers. Based on the result as above, the researcher would make the following conclusion. First. companies operating the of home shopping on cable TV should increase satisfaction by consumers by providing reliable goods and information to them. In this sense, those companies need to establish marketing strategies that vary according to demographic characteristics of consumers and at the same time provide product information necessary for fulfilling consumers' requirements. Second, consumers should be moderate in the use of credit cards to avoid unplanned purchases via home shopping on cable TV and have some knowledge to solve problems related to goods and to the use of credit cards.

Exploring the Performance of Synthetic Minority Over-sampling Technique (SMOTE) to Predict Good Borrowers in P2P Lending (P2P 대부 우수 대출자 예측을 위한 합성 소수집단 오버샘플링 기법 성과에 관한 탐색적 연구)

  • Costello, Francis Joseph;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.71-78
    • /
    • 2019
  • This study aims to identify good borrowers within the context of P2P lending. P2P lending is a growing platform that allows individuals to lend and borrow money from each other. Inherent in any loans is credit risk of borrowers and needs to be considered before any lending. Specifically in the context of P2P lending, traditional models fall short and thus this study aimed to rectify this as well as explore the problem of class imbalances seen within credit risk data sets. This study implemented an over-sampling technique known as Synthetic Minority Over-sampling Technique (SMOTE). To test our approach, we implemented five benchmarking classifiers such as support vector machines, logistic regression, k-nearest neighbor, random forest, and deep neural network. The data sample used was retrieved from the publicly available LendingClub dataset. The proposed SMOTE revealed significantly improved results in comparison with the benchmarking classifiers. These results should help actors engaged within P2P lending to make better informed decisions when selecting potential borrowers eliminating the higher risks present in P2P lending.