• Title/Summary/Keyword: Credit Prediction

Search Result 82, Processing Time 0.03 seconds

Credit Prediction Based on Kohonen Network and Survival Analysis (코호넨네트워크와 생존분석을 활용한 신용 예측)

  • Ha, Sung-Ho;Yang, Jeong-Won;Min, Ji-Hong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.2
    • /
    • pp.35-54
    • /
    • 2009
  • The recent economic crisis not only reduces the profit of department stores but also incurs the significance losses caused by the increasing late-payment rate of credit cards. Under this pressure, the scope of credit prediction needs to be broadened from the simple prediction of whether this customer has a good credit or not to the accurate prediction of how much profit can be gained from this customer. This study classifies the delinquent customers of credit card in a Korean department store into homogeneous clusters. Using this information, this study analyzes the repayment patterns for each cluster and develops the credit prediction system to manage the delinquent customers. The model presented by this study uses Kohonen network, which is one of artificial neural networks of data mining technique, to cluster the credit delinquent customers into clusters. Cox proportional hazard model is also used, which is one of survival analysis used in medical statistics, to analyze the repayment patterns of the delinquent customers in each cluster. The presented model estimates the repayment period of delinquent customers for each cluster and introduces the influencing variables on the repayment pattern prediction. Although there are some differences among clusters, the variables about the purchasing frequency in a month and the average number of installment repayment are the most predictive variables for the repayment pattern. The accuracy of the presented system leaches 97.5%.

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

SVM based Bankruptcy Prediction Model for Small & Micro Businesses Using Credit Card Sales Information (신용카드 매출정보를 이용한 SVM 기반 소상공인 부실예측모형)

  • Yoon, Jong-Sik;Kwon, Young-Sik;Roh, Tae-Hyup
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.448-457
    • /
    • 2007
  • The small & micro business has the characteristics of both consumer credit risk and business credit risk. In predicting the bankruptcy for small-micro businesses, the problem is that in most cases, the financial data for evaluating business credit risks of small & micro businesses are not available. To alleviate such problem, we propose a bankruptcy prediction mechanism using the credit card sales information available, because most small businesses are member store of some credit card issuers, which is the main purpose of this study. In order to perform this study, we derive some variables and analyze the relationship between good and bad signs. We employ the new statistical learning technique, support vector machines (SVM) as a classifier. We use grid search technique to find out better parameter for SVM. The experimental result shows that credit card sales information could be a good substitute for the financial data for evaluating business credit risk in predicting the bankruptcy for small-micro businesses. In addition, we also find out that SVM performs best, when compared with other classifiers such as neural networks, CART, C5.0 multivariate discriminant analysis (MDA), and logistic regression.

Generating and Validating Synthetic Training Data for Predicting Bankruptcy of Individual Businesses

  • Hong, Dong-Suk;Baik, Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • In this study, we analyze the credit information (loan, delinquency information, etc.) of individual business owners to generate voluminous training data to establish a bankruptcy prediction model through a partial synthetic training technique. Furthermore, we evaluate the prediction performance of the newly generated data compared to the actual data. When using conditional tabular generative adversarial networks (CTGAN)-based training data generated by the experimental results (a logistic regression task), the recall is improved by 1.75 times compared to that obtained using the actual data. The probability that both the actual and generated data are sampled over an identical distribution is verified to be much higher than 80%. Providing artificial intelligence training data through data synthesis in the fields of credit rating and default risk prediction of individual businesses, which have not been relatively active in research, promotes further in-depth research efforts focused on utilizing such methods.

The Credit Information Feature Selection Method in Default Rate Prediction Model for Individual Businesses (개인사업자 부도율 예측 모델에서 신용정보 특성 선택 방법)

  • Hong, Dongsuk;Baek, Hanjong;Shin, Hyunjoon
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • In this paper, we present a deep neural network-based prediction model that processes and analyzes the corporate credit and personal credit information of individual business owners as a new method to predict the default rate of individual business more accurately. In modeling research in various fields, feature selection techniques have been actively studied as a method for improving performance, especially in predictive models including many features. In this paper, after statistical verification of macroeconomic indicators (macro variables) and credit information (micro variables), which are input variables used in the default rate prediction model, additionally, through the credit information feature selection method, the final feature set that improves prediction performance was identified. The proposed credit information feature selection method as an iterative & hybrid method that combines the filter-based and wrapper-based method builds submodels, constructs subsets by extracting important variables of the maximum performance submodels, and determines the final feature set through prediction performance analysis of the subset and the subset combined set.

Developing Medium-size Corporate Credit Rating Systems by the Integration of Financial Model and Non-financial Model (재무모형과 비재무모형을 통합한 중기업 신용평가시스템의 개발)

  • Park, Cheol-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.71-83
    • /
    • 2008
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, in this study we present a medium sized corporate credit rating system by using Artificial Neural Network(ANN) and Analytical Hierarchy Process(AHP). Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the ANN and AHP model using both financial information and non-financial information. Finally, the credit ratings of each firm are assigned by the proposed method.

Multi-Class SVM+MTL for the Prediction of Corporate Credit Rating with Structured Data

  • Ren, Gang;Hong, Taeho;Park, YoungKi
    • Asia pacific journal of information systems
    • /
    • v.25 no.3
    • /
    • pp.579-596
    • /
    • 2015
  • Many studies have focused on the prediction of corporate credit rating using various data mining techniques. One of the most frequently used algorithms is support vector machines (SVM), and recently, novel techniques such as SVM+ and SVM+MTL have emerged. This paper intends to show the applicability of such new techniques to multi-classification and corporate credit rating and compare them with conventional SVM regarding prediction performance. We solve multi-class SVM+ and SVM+MTL problems by constructing several binary classifiers. Furthermore, to demonstrate the robustness and outstanding performance of SVM+MTL algorithm over other techniques, we utilized four typical multi-class processing methods in our experiments. The results show that SVM+MTL outperforms both conventional SVM and novel SVM+ in predicting corporate credit rating. This study contributes to the literature by showing the applicability of new techniques such as SVM+ and SVM+MTL and the outperformance of SVM+MTL over conventional techniques. Thus, this study enriches solving techniques for addressing multi-class problems such as corporate credit rating prediction.

Developing Corporate Credit Rating Models Using Business Failure Probability Map and Analytic Hierarchy Process (부도확률맵과 AHP를 이용한 기업 신용등급 산출모형의 개발)

  • Hong, Tae-Ho;Shin, Taek-Soo
    • The Journal of Information Systems
    • /
    • v.16 no.3
    • /
    • pp.1-20
    • /
    • 2007
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, this study presents a corporate credit rating method using business failure probability map(BFPM) and AHP(Analytic Hierarchy Process). The BFPM enables us to rate the credit of corporations according to business failure probability and data distribution or frequency on each credit rating level. Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the BFPM and the AHP model using both financial and non-financial information. Finally, the credit ratings of each firm are assigned by our proposed method. This method will be helpful for the loan evaluators of financial institutes to decide more objective and effective credit ratings.

  • PDF

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.