• Title/Summary/Keyword: Creativity improvement

Search Result 263, Processing Time 0.021 seconds

A Survey of Perceptions of Elementary School Teachers on the Small-Scale Chemistry (미량화학(Small-Scale Chemistry)에 대한 초등학교 교사들의 인식)

  • Kim, Sung-Kyu;Kong, Young-Tae
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.291-305
    • /
    • 2010
  • The aim of this study was to survey the perceptions of the elementary school teachers on the smallscale chemistry(SSC) following its training session. The teachers participating in the survey were 266 teachers in the Gyeongnam province. They were given a questionnaire that focused on the nine areas of the SSC: Needs for the teacher training and its application, its benefits, issues of safety and danger as well as treatment of environmental pollution, its economic efficiency and the development of investigative skills. The designed questionnaire was checked by an authority, and the responses to each question were tallied and analyzed. The results are as follows. The biggest problems of the traditional experimental methods as rated by the teachers were, in the order of importance, the preparation time, the legal liability of teachers for the safety and accidents, financial issues, disposal of the experimental wastes and the lack of relevant data. Since most of the teachers had not experienced the SSC lab programs in the field, they responded positively to the questions of need for its introduction and training. The implementation of the experimental SSC lab programs should proceed in the following order: introduction into the textbook, teacher training program, after-school education and the invitation of instructors. The most useful materials for the SSC program were CDs, videos, books and various printed materials, in that order. The responses regarding benefits of the SSC program included its simplicity, convenience, time savings, diversity, qualitative and quantitative aspects, integration into the regular class and use of toys. In particular, the teachers mentioned the increased safety due to the small amount of experimental reagents needed and the durability of plastic instruments. The familarity from the use of everyday tools as well as easy access to and the low-cost of the instruments were other important benefits. The teachers in general rated the educational content of the program highly, but many also found it to be average. Some pointed out the lack of sufficient discussion due to the individual or pair groupings as a potential shortcoming. The potential for development of problem solving ability and improvement of skills was rated positively. The number of teacher who rated the development of creativity positively was just over the half. As for the area of improving investigative skills, many found its assessment difficult and confusing because of the lack of its systemic definition and categorization. Based on the findings of this study, I would like to recommend the application and a wider dissemination of the small-scale chemistry lab program into the elementary school science curriculum.

  • PDF

EEPERF(Experiential Education PERFormance): An Instrument for Measuring Service Quality in Experiential Education (체험형 교육 서비스 품질 측정 항목에 관한 연구: 창의적 체험활동을 중심으로)

  • Park, Ky-Yoon;Kim, Hyun-Sik
    • Journal of Distribution Science
    • /
    • v.10 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • As experiential education services are growing, the need for proper management is increasing. Considering that adequate measures are an essential factor for achieving success in managing something, it is important for managers to use a proper system of metrics to measure the performance of experiential education services. However, in spite of this need, little research has been done to develop a valid and reliable set of metrics for assessing the quality of experiential education services. The current study aims to develop a multi-item instrument for assessing the service quality of experiential education. The specific procedure is as follows. First, we generated a pool of possible metrics based on diverse literature on service quality. We elicited possiblemetric items not only from general service quality metrics such as SERVQUAL and SERVPERF but also from educational service quality metrics such as HEdPERF and PESPERF. Second, specialist teachers in the experiential education area screened the initial metrics to boost face validity. Third, we proceeded with multiple rounds of empirical validation of those metrics. Based on this processes, we refined the metrics to determine the final metrics to be used. Fourth, we examined predictive validity by checking the well-established positive relationship between each dimension of metrics and customer satisfaction. In sum, starting with the initial pool of scale items elicited from the previous literature and purifying them empirically through the surveying method, we developed a four-dimensional systemized scale to measure the superiority of experiential education and named it "Experiential Education PERFormance" (EEPERF). Our findings indicate that students (consumers) perceive the superiority of the experiential education (EE) service in the following four dimensions: EE-empathy, EE-reliability, EE-outcome, and EE-landscape. EE-empathy is a judgment in response to the question, "How empathetically does the experiential educational service provider interact with me?" Principal measures are "How well does the service provider understand my needs?," and "How well does the service provider listen to my voice?" Next, EE-reliability is a judgment in response to the question, "How reliably does the experiential educational service provider interact with me?" Major measures are "How reliable is the schedule here?," and "How credible is the service provider?" EE-outcome is a judgmentin response to the question, "What results could I get from this experiential educational service encounter?" Representative measures are "How good is the information that I will acquire form this service encounter?," and "How useful is this service encounter in helping me develop creativity?" Finally, EE-landscape is a judgment about the physical environment. Essential measures are "How convenient is the access to the service encounter?,"and "How well managed are the facilities?" We showed the reliability and validity of the system of metrics. All four dimensions influence customer satisfaction significantly. Practitioners may use the results in planning experiential educational service programs and evaluating each service encounter. The current study isexpected to act as a stepping-stone for future scale improvement. In this case, researchers may use the experience quality paradigm that has recently arisen.

  • PDF

A Study on the development of Creative Problem Solving Classes for University Students (창의적 문제해결형 대학 수업 개발 연구)

  • Hyun-Ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.531-538
    • /
    • 2023
  • Recently, many university classes have been changing from instructor-centered classes to learner-centered classes, and universities are trying to establish a new direction for university education, especially to foster talented people suitable for the Fourth Industrial Revolution. To this end, universities are presenting various competencies necessary for students and focusing on research on efficient education plans for each competency. Among them, creativity is considered the most important competency that students should obtain in universities. Developing a creative problem-solving-based subject where various majors gather to produce results while conducting creative team activities away from desk classes is considered a meaningful subject to cultivate capacities suitable for the requirements of the times. Therefore, this study purpose to develop creative problem-solving-based subjects and analyze the results of class progress. This creative problem-solving-based class is an Action Learning class for step-by-step idea development, which starts with a theoretical lecture for creative idea development and then consists of five stages of Action Learning. The tasks of action learning used in this class consisted of ceramic expression to increase the intimacy of the formed group and the group's collective expression, ideas in life to combine and compress individual ideas into one, environmental improvement programs around schools, and finally UCC on various topics. In the theoretical lecture conducted throughout the class, a class was conducted on Scientific Thinking for creative problem solving, and then a group-type action learning class was conducted sequentially. This Action Learnin process gradually increased the difficulty level and led to in-depth learning by increasing the level of difficulty step by step.