• Title/Summary/Keyword: Crash performance

Search Result 224, Processing Time 0.02 seconds

Evaluation of impact resistance of high performance fiber reinforced cementitious composites under high-speed projectile crash (고속 비상체 충돌에 대한 고성능 섬유보강 시멘트 복합체의 방호성능 평가)

  • Moon, Jae-Heum;Park, Jung-Jun;Park, Gi-Joon;Cho, Hyun-Woo;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4950-4959
    • /
    • 2015
  • The importance of public infrastructures' protection against crash or blast loads has been emerging issue as structures are becoming bigger and population densities in downtown cities are growing up. However, there exists no sufficient study which considers the developments of protective building materials, that are essential for protective design and construction. To assess the protection performance and the applicability as protective materials of high performance fiber reinforced cementitious composites(HPFRCC), this study performed the impact tests with 40 mm gas-gun propelled projectile crash machine. From this study, it has observed that both high compressive strength of cement matrix and fiber reinforcement are beneficial for the improvement of impact resistance.

Optimization of Passenger Safety Restraint System for USNCAP by Response Surface Methodology (USNCAP에 대응하는 반응표면법을 이용한 조수석 안전구속장치 최적화)

  • Oh, Eun-Kyung;Lee, Ki-Sun;Son, Chang-Kyu;Kim, Dong-Seok;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety performance of a new car is evaluated through USNCAP and their results in the star rating are provided to the consumers. It is very important to obtain high score of USNCAP to appeal their performance to consumers. Therefore the car companies have made the effort to improve their car safety performance. These efforts should satisfy the demand not only to get high score but also to pass the FMVSS, NHTSA regulations on safety. Huge numbers of car crash tests have been conducted on these bases by car companies. However physical tests spend too much cost and time, as an alternative way, the simulation on the car crash could be a solution to reduce the cost and time. Therefore the simulations have been widely conducted in car industry and various researches on this have been reported. In this study, restraint system had been optimized to minimize the injury of female passenger. Belted $5^{th}%ile$ female frontal crash test was selected from various test methods of USNCAP for the study. Initial velocity of the test was 56km/h. The combination injury probability of USNCAP was selected as an objective function and the injury limit value, which was defined in FMVSS, was set to an optimization constraint. Many researches that were similar to this study had been conducted, however most of them had limitation that interaction between airbag and safety belt had not been considered. Contrary to these researches, the interaction was considered in this study.

Numerical Simulation of Full-Scale Crash Impact Test for Fuel Cell of Rotorcraft (회전익항공기 연료셀 충돌충격시험 Full-Scale 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan;Kim, Sung Jun;Kim, Soo Yeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Crashworthy fuel cells have a great influence on improving the survivability of crews. Since 1960's, the US army has developed a detailed military specification, MIL-DTL-27422, defining the performance requirements for rotorcraft fuel cells. In the qualification tests required by MIL-DTL-27422, the crash impact test should be conducted to verify the crashworthiness of fuel cell. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. Because the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, the failure of crash impact test can result in serious delay of a entire rotorcraft development. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. Present study performs the numerical simulation using SPH(smoothed particle hydro-dynamic) method supported by a crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the resulting equivalent stresses of fuel cell itself are calculated and vulnerable areas are also evaluated.

Development of the Piecewisely-integrated Composite Bumper Beam Based on the IIHS Crash Analysis (IIHS 충격해석에 근거한 구간 조합 복합재료 범퍼 빔 개발)

  • Jeong, Chan-Hee;Ham, Seok-Wu;Kim, Gyeong-Seok;Cheon, Seong S.
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2018
  • The aim of the current work is to characterise a piecewisely-integrated composite bumper beam based on the IIHS bumper crash protocol. IIHS bumper crash FE analysis for an aluminium type bumper beam was carried out to get the information about the dominant loading types at several regions in the bumper beam during crash. In the meantime, robust stacking sequences against tension and compression have been searched for using FE analysis of a coupon type model. After determining most effective stacking sequences for tension and compression, three-point bending simulation was preliminarily carried out to investigate the combination performance of them. Finally, IIHS bumper crash FE analysis for the piecewisely-integrated composite bumper beam, which consisted of the combination of tension effective stacking sequence and compression efficacious stacking sequence, was conducted and the result was compared with other types of composite bumper beams. It was found that the newly suggested piecewisely-integrated composite bumper beam showed superior crashworthy behaviour to those of uni-modal stacking sequence composite bumper beams.

Assessment of Crashworthiness Performance for Fuel Tank of Rotorcraft (회전익 항공기용 연료탱크 내추락 성능 시험평가)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Hue, Jang-Wook;Shin, Dong-Woo;Jun, Pil-Sun;Jung, Tae-Kyung;Ha, Byung-Kun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.806-812
    • /
    • 2010
  • Fuel tanks for rotorcraft have a great influence on the survivability of crews. The philosophy of crashworthy rotorcraft design evolved from the long term effort of the US Army. US army established MIL-DTL-27422D for specifying detail requirements related to crash resistant fuel tank especially for military rotorcraft to prevent post crash fire which is the greatest threat to life in rotorcraft crash. Crashworthiness of the rotorcraft fuel tank could be guaranteed through the crash impact tests which are specified in the MIL-DTL-27422D. Fuel tanks for Korea Helicopter Program have been developed and tested according to MIL-DTL-27422D with minor modifications of flexible fittings. The present study shows some results of the mandatory crash impact tests of the fuel tanks to verify their performances.

Study on Improvement Method and Performance Analysis About Occupied Existing Roadside Barriers in Expressway (고속도로에서 공용중인 노측용 차량방호울타리의 성능분석 및 개선방안에 관한 연구)

  • Joo, Jae-Woong;Jang, Dae-Young;Ha, Jong-Moon;Park, Je-Jin
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 2011
  • It is possible to set up the Roadside Barrier which is suitable for Performance Evaluation Criteria by domestic standard. But a number of section of expressway roadside have old guardrail that was installed before reform the guideline. These poor performance guardrails threaten driver's life. There is lots of difficult problem to change old guardrails that are installed 2,777km in expressway of whole road side at the same time. Especially budget problem. The purpose of study is to develop performance improvement guardrails by the minimum reinforcement. In this study, guardrail improvement method(SB1, 3, 5 grade) is developed through crash simulation using LS-DYNA 3D and vehicle crash test. And it's expected not only to decrease of collision accident but to increase safe level. Of course one thing that can't be missing is to reduce a lot of budget of guardrail change.

Analysis of Car-Pedestrian Collisions Using Scaled Korean Dummy Models (한국인 체형을 가진 보행자와 차량의 충돌 해석)

  • Shin, Dong-Han;Kim, Kwang-Hoon;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.110-117
    • /
    • 2007
  • According to the pedestrian protection regulations of Europe and Japan, the head injury must not exceed a limitation in the defined test condition for the protection of pedestrians from a vehicle crash. However, it is difficult to evaluate the performance of protection because each regulation has different test conditions such as dummy, impact speed and so on. This circumstance needs the development of a model that describes the anthropometry of the crash victim with a sufficient accuracy. We constructed scaled pedestrian dummies using MADYSCALE. Simulations were performed for various crash speeds and pedestrian postures. The scaled Korean dummies and HybridIII dummies were used to compare the pedestrian dynamic behaviors and head injury criteria during the collision. The HIC values of scaled korean dummies were found to be higher than those of Hybrid III dummies. The impact for gait posture was less than that for standing.

Design & Implementation of Enhanced Groupware Messenger

  • Park, HyungSoo;Kim, HoonKi;Na, WooJong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2018
  • In this paper, we present some problems with the Groupware Messenger functionality based on dot net 2.0 and implement a new design structure to solve them. They include memory leakage, slow processing, and client window memory crash. These problems resulted in the inconvenience of using instant messaging and the inefficient handling of office tasks. Therefore, in this paper, instant messaging functionality is implemented according to a new design architecture. The new system upgrades dot net 4.5 for clients and deploys the new features based on MQTT for the messenger server. We verify that the memory leak problem and client window memory crash issues have been eliminated on the system with the new messenger functionality. We measure the amount of time it takes to bind data to a set of messages and evaluate the performance, compared to a given system. Through this comparative evaluation, we can see that the new system is more reliable and performing.

Damageability, Repairability of Frame Type Passenger Vehicles at Low Speed 40% Offset Crash Test (저속40%옵셋 충돌시험을 통한 프레임형 승용차량의 손상성수리성에 관한 연구)

  • 박인송;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.127-133
    • /
    • 2003
  • For the purpose of evaluation the damage repairability of a Frame Type Passenger vehicle which experienced a Low Speed 40% Offset front and rear Crash Test. tests were made according to the RCAR testing procedures. Test results concluded ; (1) The deceleration at C.G(center of gravity) off 6.9∼11.39 was similar to that for the vehicle. The airbag system was found to affect neither the passenger's safety nor the savings of the repairing costs. (2) In order to improve the repairability of the Frame Type Passenger vehicle after collision should be a higher crash performance of the bumper on the RCAR standards.

Safety Analysis through Small Car Crash Simulation of Bollard with Square Rounding Sidewalk Block Frame (사각 라운딩 보도틀이 시공된 자동차진입 억제용 말뚝의 소형 승용차량 충돌 시뮬레이션을 통한 안전성 분석)

  • Park, Ji-Young;Ryu, Dong-Hwan;You, Eon-Zung;Kim, Seong-Kyum
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • In this study, a square rounding sidewalk block frame was developed considering the simplicity of construction and the superiority of aesthetics. In addition, it is possible to prevent damage, deformation, and settlement of adjacent sidewalk blocks due to plastic deformation during car impact load of installed bollad. A non-linear structural analysis was performed through finite element analysis to examine the performance of a car crash to which this was applied. Structural safety was confirmed through car crash simulation according to the direction of impact, and it is estimated that the function can be restored by replacing some parts in case of damage due to impact.