• Title/Summary/Keyword: Crash performance

Search Result 223, Processing Time 0.021 seconds

A Study on the Injury Criteria of the Occupant Protection Performance of Crush Cushions (충격흡수시설의 탑승자보호 성능평가 기준에 관한 연구)

  • Lim, Jae-Moon;Jung, Geun-Seup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2008
  • The performance of crash cushion systems is certified through the full scale crash tests by the standard for installation and maintenance guidelines for roadside safety appurtenance. The impact severities of impacting vehicles in collision with crash cushion systems are rated by indices THIV and PHD. Crash test results are considered to study the performance of three crash cushion systems. In case of the frontal impact or the offset frontal impact, the results show that THIV values of three systems are very close to the threshold limit for the occupant protection. Also, the results show that PHD would be improper for the occupant protection performance index. In order to improve the occupant protection performance of crash cushions, ASI needs to be included in the impact severity index.

Performance evaluation of steel and composite bridge safety barriers by vehicle crash simulation

  • Thai, Huu-Tai
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.405-414
    • /
    • 2010
  • The performance of full-scale steel and composite bridge safety barriers under vehicle crash is evaluated by using the nonlinear explicit finite element code LS-DYNA. Two types of vehicles used in this study are passenger car and truck, and the performance criteria considered include structural strength and deformation, occupant protection, and post-crash vehicle behavior. It can be concluded that the composite safety barrier satisfies all performance criteria of vehicle crash. Although the steel safety barrier satisfies the performance criteria of occupant protection and post-crash vehicle behavior, it fails to satisfy the performance criterion of deformation. In all performance evaluations, the composite safety barrier exhibits a superior performance in comparing with the steel safety barrier.

A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer (전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구)

  • 박서욱;전만철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.

A Study on the Performance of Mechanical Crash Sensors (기계식 충돌 센서의 성능 해석)

  • Kim, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.136-142
    • /
    • 1995
  • An analysis model is proposed for the performance prediction of typical ball and tube type mechanical crash sensors based upon mass-spring-viscous gas damping idealization. Also a construction of mechanical crash pulse generator is suggested as an experimental tool for calibration and verification of model predictions. A sensor tuning procedure for a particular set of crash pulses is suggested based upon the analysis model and the experimental tools.

  • PDF

Shape Design of Crash Box with Absorption Performance against Impact (충돌에 대한 흡수 성능을 가진 크래쉬 박스의 형상설계)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.169-173
    • /
    • 2011
  • Crash box is introduced to vehicle design to improve the impact performance and reduce the damage of vehicle body at impact speed. The crash box behind bumper can absorb impact energy effectively to improve vehicle safety. Repair cost at collision accident can be cut down by use of this box. The configuration of car body must be designed by considering the characteristic of material due to the deformation of car body happened at impact. Many papers have been published about material of crash box all over the world. The study of crash box with tube expansion type has been going on Korea. This study is done by the simulation analysis about front collisions against 5 kinds of aluminum crash boxes with the basic structure of square section.

Optimal Performance Design for Concrete Median Barrier with Crashworthiness Analysis (차량 충돌 해석을 통한 중앙분리대의 최적 성능 설계)

  • 한석영;고성호;최형연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.168-178
    • /
    • 2002
  • The purpose of this study is to develop an optimal performance design ova concrete median barrier using the design of experiment and crash simulation which is done by Pam-Crash, one of the commercial crash simulation software. A formula of characteristic value was suggested to obtain an optimal performance design considering all of von Mises stress, volume and acceleration at center of gravity of a heavy truck. An optimal design of a concrete median barrier was obtained by the analysis of variance based on design of experiment and crash simulation. A crash simulation with the optimal design was accomplished in order to verify the suitability of the suggested formula and the proper application of the design of experiment. The obtained optimal design was satisfied for a domestic design regulation of a concrete median barrier.

Steel processing effects on crash performance of vehicle safety related applications

  • Doruk, Emre
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2017
  • Due to the increasing competition, automotive manufacturers have to manufacture highly safe and light vehicles. The parts which make up the body of the vehicle and absorb the energy in case of a crash, are usually manufactured with sheet metal forming methods such as deep drawing, bending, trimming and spinning. The part may get thinner, thicker, folded, teared, wrinkled and spring back based on the manufacturing conditions during manufacturing and the type of application methods. Transferring these effects which originate from the forming process to the crash simulations that are performed for vehicle safety simulations, makes accurate and reliable results possible. As a part of this study, firstly, the one-step and incremental sheet metal forming analysis (deep drawing + trimming + spring back) of vehicle front bumper beam and crash boxes were conducted. Then, crash performances for cases with and without the effects of sheet metal forming were assessed in the crash analysis of vehicle front bumper beam and crash box. It was detected that the parts absorbed 12.89% more energy in total in cases where the effect of the forming process was included. It was revealed that forming history has a significant effect on the crash performance of the vehicle parts.

Crash Performance of Front Side Member Impacted with Angle (프론트 사이드 멤버의 경사 충돌 성능)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • Front impacted SUV vehicle shows that the front parts of side members are collapsed by the bending due to the transverse load exerted at the end of side members. Side member models were impacted with various angles in order to study the crash performance according to the impact angle. Even for the small impact angle of $10^{\circ}$, crash performance seriously deteriorated and the deformations for impact angle $15^{\circ}$ were similar to those from the front body impact analysis. In addition, the angled front impact analysis for the straight member with hat section was carried out and the effects of inner reinforcement shape on crash performance was investigated.

Crash Performance of a Straight Member for Various Section Shapes and Local Reinforcement (단면 형상 및 국부 보강에 따른 직선 부재의 충돌 성능)

  • Lee, Hunbong;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.97-103
    • /
    • 2013
  • Crash performance of the straight member was studied by FE analysis. One end of model was fixed and the other end was impacted by 1,000kg rigid mass with velocity of 16.0m/sec. The maximum and mean load were discussed to compare crash performance. The members with various section shapes were analyzed and the flange location was changed. Also, spot weld points were added in the initial buckling region to investigate its effect. Final rectangular section model which has flanges at the center and reinforcement in initial buckling region showed high enhancement in crash performance.

Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects (용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가)

  • Chung, K.H.;Kwon, H.S.;Park, S.H.;Ro, D.S.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.