• Title/Summary/Keyword: Crash Tests

Search Result 131, Processing Time 0.027 seconds

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Statistical Review for USNCAP Front Crash Test Results in MY2011 (2011년 모델에 대한 정면 미국신차안전도평가 결과에 대한 통계적 분석)

  • Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.81-87
    • /
    • 2012
  • New car assessment program (NCAP) originated from USNCAP in 1979 has been implemented in several countries or markets, for instance USA, Europe, Korea, Japan, China and Australia. NCAP has contributed greatly to reduce accidental tolls. But recently, NCAP performance has no distinction between cars because manufacturer have been continuously developed to improve NCAP performance. Therefore, NHTSA announced new USNCAP protocol becoming effective from MY2011. NHTSA had carried out many NCAP tests based on the new test protocol and announced these test results. In this paper, USNCAP test results were reviewed by statistical method. This review was focused on passenger cars and frontal crash test results in order to investigate effect of changes in new NCAP protocol. There are two key changes, one is sited female dummy in passenger position, the other is enlarged to 4 scoring body regions in each dummy. Results of this review were summarized as followings. Performance in Passenger (12.5%) is lower than Driver's (50%) for number of 5 star vehicle. Neck injury criterion is dominant to NCAP star rating for both dummies in the mean sense. For standard deviation, chest deflection is showed largest value in driver dummy but neck injury criterion is showed for passenger's. DKAB and PKAB were equipped 28.1% and 6.2%, respectively. Consequently, the countermeasure for new USNCAP frontal crash test is essential to control well dummy kinematics with some safety features including KAB to reduce neck injuries.

The Study on influence of test factors for WorldSID injury through AE-MDB side crash test (AE-MDB시험 시 인체모형 상해치에 대한 시험 인자 영향성 연구)

  • Sun, Hongyul;Han, Pyokyong;Oh, Eunkyung;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • NCAP(New Car Assessment Program) makes vehicle manufacturer improve safety performance through free competition and customers guarantee vehicle selection by providing information of vehicle safety. That's why it is important not only to meet the regulation, but also to cope with NCAP. EuroNCAP(European New Car Assessment Program) side tests have conducted by using Progressive MDB and Euro SID II in order to reproduce crash test between two vehicles over 10 years. However various researches report that Progressive MDB and Euro SID II do not reflect evolving vehicle design, impact performance and biofidelity of human. Therefore EuroNCAP has the plan to conduct AE-MDB side crash test using WorldSID which is more evolved from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to develop safety performance for new test closely. This paper is to find test set-up parameters which affect into dummy injury instead of restraint system and to research on its tendency. It is processed with mini and small car to know influence as changing vehicle size and also analyzed by DFSS(Design for six sigma) which is one of optimization tools. DFSS is vaildated by simulating CAE with L18 orthogonal array of 6 control factors adjustable as EuroNCAP requirement.

A Study on the Characteristics of Domestic Vehicle on the Roof Crush Test Considering the Enhanced Safety Standard, FMVSS 216 (북미 법규 강화를 고려한 국내 자동차의 천정강도 시험특성에 관한 연구)

  • Kim, Eun-Hee;Lee, Jae-Kwang;Lee, Moon-Gu;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.348-354
    • /
    • 2009
  • In order to reduce the risk of roll over crash, one of the greatest risk events, National Highway Traffic Safety Administration(NHTSA) issued Notice of Proposed Rulemaking(NPRM) enhancing the safety standard on roof crush resistance, FMVSS No. 216 and changing some part of the test procedure. According to this NPRM, the boundary Gross Vehicle Weight Rating(GVWR) of the vehicles applied by this standard is extended from 2,722kg(6000 lb) to 4,536 kg(10000 lb) and the applied test force is increased from 1.5 times to 2.5 times of Unloaded Vehicle Weight (UVW). Also the current limit on the amount of roof crush, 127mm(5 inch), is replaced with a new requirement of maintaining enough headroom without touching the head of a seated 50% male dummy. In this paper, we carried out the rollover crash test on some domestic cars and investigated their safety due to the KMVSS No. 92 and the enhanced safety standard, FMVSS No. 216, respectively. The result shows that most of them can satisfy the new standards but further tests will be necessary, especially for heavier cars.

  • PDF

Footrest design optimization of a small vehicle to improve ANCAP lower leg injury (호주 신차안전도평가의 하부다리 상해치 개선을 위한 경차의 Footrest 형상 최적화)

  • Kim, Joseph;Lee, Mansu;Nam, Joungin;Han, Jaenyung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • In order to protect occupant during car crash accident, Regulation and NCAP(New Car assessment Program) have been developed among various countries like U.S.A., Europe, Korea and Australia. Especially NCAP scores affect to sales of vehicles. So vehicle makers are trying to get good score in NCAP. Low leg injuries play an important role in Australia and Euro NCAP and these injuries are related with footrest design. Optimization of footrest design in early stage of vehicle development is necessary to obtain better and robust results of low legs during crash tests. In this paper, DFSS method and finite element model were used to optimize the low leg performance in small RHD vehicles. Compared with the lower leg injury of base model, the lower leg injury of proposed model was slightly improved and robustness was enhanced also.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

An Estimative Model of Spot Weld Failure-1. Failure Criteria (점 용접점 파단의 정량적 모델-1. 파단조건식)

  • Lee, T.S.;Lee, H.Y.;Shin, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.40-52
    • /
    • 1998
  • A good grasp of the failure mechanisms of resistance spot weld, widely used in joining the auto-panels, in essential to the structural/crashworthy analyses and integrity assessment of the whole auto-body. In this study, We provide an estimative model describing the failure behavior of resistance spotf weld, and apply the model to the finite element analysis of crashworthiness. First, in "Part 1-Failure Criteria", to be used for the finite element analysis of spot-welded structural panels of an auto-body, (i) a methodology for quantifying the spot weld failure and the accompanying failure criteria are presented, and (ii) the coefficients of the failure equation are determined by a munimum number of appropriate experimental tests. To achieve these, we derive the functional form of the failure envelop by limit analysis, and correlate it with the form in PAM-$CRASH^{TM}$ code, and also investigate the effect of the failure coefficients on the failure envelop form. An estimative model obtained in this Part1, as spot weld failure criteria is applied to the Macroscopic finite element analysis of autobody structural panels using PAM-$CRASH^{TM}$ code in Part 2.

  • PDF

CRASHWORTHINESS ASSESSMENT OF SIDE IMPACT OF AN AUTO-BODY WITH 60TRIP STEEL FOR SIDE MEMBERS

  • Huh, H.;Lim, J.H.;Song, J.H.;Lee, K.S.;Lee, Y.W.;Han, S.S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • This paper is concerned with the energy absorption efficiency of auto-body side structures for the conventional steel and 60TRIP high strength steel. In order to evaluate the energy absorption efficiency, the dynamic crash analysis is carried out with the regulation of US-SINCAP. The analysis adopts the Johnson-Cook model for the dynamic material properties, which have been obtained from dynamic material tests. For the sake of the dynamic material properties, the analysis has been accurately peformed for the crashworthiness assesment. The analysis result provides deformed shapes, amounts of penetration and accelerations at several important points during crash. The result confirms that 60TRIP greatly improves the crashworthiness of the side members without sacrificing the weight and thus can be used for the light-weight design of an auto-body.

Whiplash Injury Case Studies through Low Speed Rear-end Crash Tests (차대차 추돌사고 재현시험을 통한 경추염좌 상해 위험도 연구)

  • Lim, Namkyoung;Shim, Sangwoo;Jung, Hyuncheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.432-438
    • /
    • 2016
  • Whiplash injuries in low-speed rear-end collisions are the most common injuries and has been a social issue in insurance industry, such as excessive medical claim costs along with exaggerated injuries of victims and treatments from hospitals. According to the Korea Insurance Development Institute reports, the number of claims by rear-end collision was approximately 703,000, which accounts for 53.6 % of the total car-to-car collisions in 2014. Part of the neck injury claims in the Korea car insurance was approximately 28.3 %. Furthermore, approximately 98.4% of the injured persons in rear-end collisions sustained minor injuries under AIS2. In order to improve this situation as well as find out the severity of neck injuries from rear-end collision, the Korea Automobile Insurance Repair Research and Training Center conducted car-to-car rear-end crash tests that striking vehicles(SUV) collided into different sizes of struck-vehicles(small, middle, and large sedan) at the impact speeds of 8 km/h ~ 16 km/h. In order to analyze the whiplash injury, the BioRID-II was seated in each struck-vehicles, and the neck injury criteria(NIC), head contact time, maximum vehicle accelerations, and mean vehicle accelerations were calculated from values from the accelerations of the dummy and the struck-vehicles.

Evaluation of Fracture Behaviours of Cementitious Composites by High-velocity Projectile Impact (고속 비상체 충격에 의한 시멘트 복합체의 파괴거동 평가)

  • Min, Ji-Young;Cho, Hyun-Woo;Lee, Jang-Hwa;Kim, Sung-Wook;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.55-62
    • /
    • 2015
  • An importance of infrastructures' protection against crash or blast loading has been an emerging issue as structures are becoming much bigger and population densities in downtown are growing up. However, there exists no such a standard to evaluate the protection performance of construction material itself. Prior to building standards for protection assessment techniques, this study performed gas-gun propelled projectile impact tests with series of contact-type monitoring systems to investigate the applicability of each sensing type. Through the impact tests, failure modes and protection performances of both normal concrete and UHPC (Ultra High Performance Concrete) reinforced by steel fibers were also evaluated. The results showed that LVDT could be applicable for the impact test among contact-type sensors and UHPC with fibers had a remarkable potential to improve protection against impact loading.