• Title/Summary/Keyword: Crash Strength

Search Result 88, Processing Time 0.023 seconds

On Study the Safety Diagnosis of Carbody Structure for Crashed Electric Multiple Units (사고전동차 구조체의 안전진단에 관한 고찰)

  • Bae Dae-Sung;Park Geun-Soo;Chung Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.253-259
    • /
    • 2005
  • This paper describes 3D Dimensional Measurement(EDM testing) and tensile testing results of carbody structure for crashed EMU(Electric Multiple Units). Tensile tests were performed on two different types of specimens in order to evaluate the strength changes before and after damages, obtained from plastic deformed area and nondeformed region of the crashed EMU. And Structural analysis of EMU was performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The testing results have been used to provide the critical information for the criteria of safety diagnosis.

Crashworthiness on the final design of the KHST power-car (한국형 고속전철 동력차 최종설계의 충돌안전도 분석)

  • 노규석;구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.235-242
    • /
    • 2000
  • The most important technology to improve crashworthiness of high speed trains is to design their front structures to absorb crash energy easily. In this paper, crashworthy designs of the front structures in KTX and KHST are compared by numerical simulation under SNCF accident scenario. Furthermore, to evaluate their crashworthiness tinder a typical real situation, the power cars are simulated for the accident collided against a deformable dump truck of 15 tons at 110 kph. The front structure of KHST, finally designed, shows a good crashworthy characteristics. Finally, the impact strength of coupling components is evaluated by analyzing a consist of the front three KHST units under scenario of train-to-train collision at 30 kph.

  • PDF

Numerical Modeling to Evaluate Rear Crashworthiness for Round Recliner of Automotive Seats (자동차 시트용 라운드 리클라이너의 후방 충돌 성능 평가를 위한 수치해석 모델링)

  • Kim, Jung-Min;Lee, Kyoung-Taek;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • The development of more safe recliners is an important issue in the automotive industry. However, the development of new recliners is costly and take much time because it is typically based on experimental evaluation using prototypes. This study presents the evaluation of rear crashworthiness for round recliner using finite element method. That reduces the number of repeating test and gives an information about stiffness. To evaluate rear crashworthiness, the FMVSS 301 simulation and pendulum impact simulation were performed. The load path on two simulations was observed and compared each other in this paper. Also stress, strain and internal energy was compared. It is attempted the tooth strength simulation using a substructure option on PAM-CRASH.

Measurement of Mechanical Properties for Hot Press Forming (열간프레스성형에서의 기계적 물성 측정)

  • Ahn, Kang-Hwan;Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Hong-Gee;Park, Sung-Ho;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • In order to overcome drawbacks of the advanced high strength steel such as inferior formability and large springback, the hot press forming process(HPF) has been being applied for forming of automotive sheet parts. Good formability and dimensional accuracy without springback as well as good crash performance of final products are the advantages of the HPF process. In this work, a method to characterize the mechanical properties of the HPF steel was developed based on the simple tension test at high temperatures and its finite element analysis, while it was applied to obtain strain rate and temperature dependent flow curves of the HPF steel. The final flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF

Hot Forging Analysis of Rotor Grip with Titanium Alloy for Unmanned Helicopter (무인헬기용 티타늄 합금 로터 그립의 열간성형해석)

  • Lee, Seong-Chul;Kong, Jae-Hyun;Hur, Kwan-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-103
    • /
    • 2011
  • Rotor grip is used as a component of rotor system in unmanned helicopter. Instead of usual machining, hot forging process has been considered to improve its proof stress against repeated loading conditions and crash in the farm-field. Die design and forming analysis have been performed according to the conditions such as billet volume, flash, cavity filling, and the distribution of damage during the forming by using FE analysis. In the results of analysis, the possibility of structural failure in the model has not been found because its maximum effective stress is much lower than yield strength of the titanium alloy. In the forging die design, flash has been allowed because of low production in the industrial field. Preform design was studied by using FE-analysis, and its optimal dimension was obtained in the hot forging of rotor grip with titanium alloy.

Fatigue Characteristics of Laser Welding Part for TB (TB용 레이저 용접부의 피로 특성)

  • Oh, Jong-Chul;Han, Moon-Sik;Seo, Jung;Lee, Je-Hoon
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.23-29
    • /
    • 2002
  • As automotive manufacturers have taken a growing more interest in tailored sheet metals for improving the rigidity, weight reduction, crash durability, and cost saving application of the tailored sheet metals to automotive bodies has been resently increased greatly. In this study, we investigated the characteristics of fatigue crack initiation behavior of laser welded sheet use for vehicle body panel. We experimented three types of specimens which were machined of the same base metal : one is 1.4㎜ thick, another is 1.6㎜ thick, the others is laser welded of the 1.4mm thick specimen and 1.6㎜ thick specimen. The results indicated that laser welded metal (1.4+1.6㎜) is the best one for fatigue strength and fatigue life.

  • PDF

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

Evaluation of Mechanical Properties of Welded Metal in Tailored Steel Sheet Welded by $ CO_2$ Laser ($ CO_2$레이저 합체박판 용접부의 기계적 물성평가)

  • Ghoo, Bon-Young;Keum, Young-Tag
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.142-150
    • /
    • 2001
  • Automotive manufactures have taken more interests in tailored sheet metals for improving the rigidity, weight reduction, crash durability, and cost savings so that their application to auto-bodies has been increased. However, since the tailored sheet metals do not behave like un-welded sheet metals in press forming operations, the stamping engineers no longer rely only on conventional forming techniques. Futhermore, there is no clear understanding of the characteristics of welded metal which influence the overall press formability of tailored sheet metals. Recently, the computer simulations are prevailing for the evaluation of the formability. Unfortunately, the mechanical property of tailored sheet metal has to be quantitatively defined in the simulation. In this study, the analytical equations are formulated in order to find the mechanical properties of the welded metal in the tailored sheet metal welded by co$_2$laser. Based on force distribution assumption, the constitutive behavior of the welded metal is investigated using uniaxial tensile test results of base metals and tailored sheet metal. Then, the strength coefficient, work-hardening exponent, and plastic strain ratio of laser-welded metal are calculate from those of base metals and tailored sheet metal. In addition, the existence of weld defects in the welded metal is indirectly detected by examining the slop of strength coefficient of the welded metal.

  • PDF

Effect of Paint Baking on the Strength and Failure of Spot Welds for 780 TRIP Steels (780 MPa급 TRIP강의 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Son, Jong-Woo;Nam, Dae-Geun;Kim, Dong-Cheol;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.66-73
    • /
    • 2010
  • Conventional fracture test of resistance spot weld had been performed without consideration of paint baking process in automobile manufacturing line. This study was aim to investigate the effect of paint baking on fracture mode and load carrying capacity in fracture test for resistance spot welded 780TRIP steels. With paint baking cycle after resistance spot welds, peel tests and microhardness were conducted on the as-welded and baked samples. Resistance spot welds in AHSS (Advanced High Strength Steels) are prone to display partial interfacial fractures during fracture test or vehicle crash. Baking cycle increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial to full button fracture for the L-type peel tests. Specially, the differences in fracture appearance are apparent when the nugget size of spot welds is small enough to produce the partial interfacial fracture. The comparison of macrohardness and microstructure between as-welded and baked samples showed that there are no large difference in change the fracture mode. However, the results of the instrumented indentation test suggested that fusion zone and HAZ of baked sample have less tensile and yield strength and proves that the tempering effects are applied and enhanced the resistance to fracture on welds with application of baking cycle.

Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis (유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화)

  • Son, Hyun-Sung;Choi, Byung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.