• Title/Summary/Keyword: Crash Consistency

Search Result 2, Processing Time 0.015 seconds

Design and Implementation of NVM-based Concurrent Journaling Scheme (저널링 파일 시스템을 위한 비휘발성 메모리 기반 병행적 저널링 기법의 설계 및 구현)

  • Pak, Suehee;Lee, Eunyoung;Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.157-163
    • /
    • 2021
  • A single write operation in a file system can modify multiple data, but these changes in the file system are not atomically written to disk. Thus, for the consistency of the file system, conventional journaling guarantees crash consistency instead of sacrificing the system performance. It is known that using non-volatile memory as a journal space can alleviate performance degradation due to low latency and byte-level accessibility of non-volatile memory. However, none of the journaling techniques considering non-volatile memory provide scalability. In this paper, journal space on non-volatile memory is divided into multiple regions for scalable journaling, thus dispersing concentrated operations in one region. Second, the journal area-specific operator structure is used to accelerate data write operations to storage devices. We apply the proposed technique to JFS to evaluate it on multi-core servers equipped with high-performance storage devices. The evaluation results show that the proposed technique performs better than the existing technique of the NVM-based journaling file system.

A Data-Consistency Scheme for the Distributed-Cache Storage of the Memcached System

  • Liao, Jianwei;Peng, Xiaoning
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.92-99
    • /
    • 2017
  • Memcached, commonly used to speed up the data access in big-data and Internet-web applications, is a system software of the distributed-cache mechanism. But it is subject to the severe challenge of the loss of recently uncommitted updates in the case where the Memcached servers crash due to some reason. Although the replica scheme and the disk-log-based replay mechanism have been proposed to overcome this problem, they generate either the overhead of the replica synchronization or the persistent-storage overhead that is caused by flushing related logs. This paper proposes a scheme of backing up the write requests (i.e., set and add) on the Memcached client side, to reduce the overhead resulting from the making of disk-log records or performing the replica consistency. If the Memcached server fails, a timestamp-based recovery mechanism is then introduced to replay the write requests (buffered by relevant clients), for regaining the lost-data updates on the rebooted Memcached server, thereby meeting the data-consistency requirement. More importantly, compared with the mechanism of logging the write requests to the persistent storage of the master server and the server-replication scheme, the newly proposed approach of backing up the logs on the client side can greatly decrease the time overhead by up to 116.8% when processing the write workloads.