• Title/Summary/Keyword: Crankshaft-Journal Bearing System

Search Result 28, Processing Time 0.019 seconds

A Study on te Dynamic Behavior of a Scroll Compressor Considering Tangential Leakage (접선방향의 누설을 고려한 스크롤 압축기의 동적 거동에 관한 연구)

  • 김태종;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.20-31
    • /
    • 1996
  • Pressures in compression pockets consists of two identical spiral scrolls are influenced by gas flow resistance in discharge process and leakages in radial and tangential directions between two scroll wraps. In this paper, considering geometrical characteristics of these members, flow resistance and refrigerant gas leakage losses, pressure variations in compression pockets are calculated. For a scroll compressor model with fixed crank mechanism, acting load on crankshaft is analyzed. And, for a vertical type crankshaft-journal bearing system used in scroll compressor, nonlinear transient response is calculated including nonlinear fluid film reaction forces of journal bearings.

Analysis of Journal Locus in a Connecting Rod Bearing (엔진 연결봉 베어링의 운동 궤적 해석)

  • 조명래;정진영;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.183-189
    • /
    • 1997
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocating internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations of journal motion have been derived and then the numerical integration of these equations performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotating speeds, and bearing parameters.

  • PDF

Analysis of Journal Locus in a Connecting Rod Bearing (엔진 연결봉 베어링의 운동 궤적 해석)

  • 조명래;정진영;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.17-23
    • /
    • 1998
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocation internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations are performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotation speeds, and bearing parameters.

  • PDF

Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston (피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

A Study, on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine (엔진 연결봉 베어링의 최소 유막 두께에 관한 연구)

  • Choi, Jae-Kwon;Hur, Kon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.14-26
    • /
    • 1994
  • The minimum oil film thickness(MOFT) in the connecting-rod bearing of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film characteristics. And cylinder pressure, crank-pin surface temperature and bearing temperature are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable determination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Development of a Multi-Tasking Machine Tool for Machining Large Scale Marine Engine Crankshafts and Its Design Technologies (대형 선박엔진 크랭크샤프트 가공용 복합가공기 기술 개발)

  • An, Ho-Sang;Cho, Yong-Joo;Choi, Young-Hyu;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2012
  • A multi-tasking machine tool for large scale marine engine crankshafts has been developed together with design technologies for its special devices. Since work pieces, that is, crankshafts to be machined are big and heavy; weight of over 100 tons, length of 10 m long, and diameter of over 3.5 m, several special purpose core devices are necessarily developed such as PTD (Pin Turning Device) for machining eccentric pin parts, face place and steady rest for chucking and resting heavy work pieces. PTD is a unique special purpose device of open-and-close ring typed structure equipped with revolving ring spindle for machining eccentric pins apart from journal. In order to achieve high rigidity of the machine tool, structural design optimization using TMSA (Taguch Method based Sequential Algorithm) has been completed with FEM structural analysis, and a hydrostatic bearing system for the PTD has been developed with theoretical hydrostatic analysis.

Analysis of instantaneous friction in full-circumferentially grooved engine main bearings (원주방향 윤활홈을 갖는 엔진 주베어링의 연속 마찰 해석)

  • 전상명
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.35-46
    • /
    • 1990
  • The instantaneous friction in main bearings of a single cylinder diesel engine was determined by measuring the instantaneous angular velocity, calculating the resulting forces acting on the bearings, and solving the unsteady Reynolds equation in combination with the mobility method. The considered system consists of only the crankshaft with flywheel and oil pump. The thermal effects were not considered because of the short testing time. The tests were conducted using an electric start motor. The results indicated that when the bearing is not near equilibrium for very small speeds, simple film lubrication theories are not accurate. The details of grooves and unsteady terms in the Reynolds equation cannot be ignored for increasing efficiency of instantaneous friction calculation of the engine bearings. The effects of speed on instantaneous friction and energy lost in friction were determined.

  • PDF