• Title/Summary/Keyword: Crankcase relief valve

Search Result 3, Processing Time 0.017 seconds

Design and Evaluation of a Crankcase Relief Valve Spring for LNG-Fueled Ships (LNG 연료추진 선박용 크랭크실 릴리프 밸브 스프링의 설계 및 평가)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.263-269
    • /
    • 2015
  • Growing concerns regarding air pollution have recently increased the demand for liquefied natural gas (LNG) fueled ships. LNG-fueled ships are equipped with an explosion relief valve in the crankcase to relieve excessive pressure and stop flames from emitting from the crankcase. In this study, a finite element analysis was conducted to evaluate the crankcase relief valve disk spring design using an ANSYS Workbench, v.15. The setting pressure, leak and explosion test performed by european standard EN14797 to evaluate function and mechanical integrity of crankcase relief valve. The tests results indicate that the pressure of the crankcase relief valve is 3.05 bar, with no air leakage at 2.97 bar. Finally, the mechanical integrity of the crankcase relief valve was confirmed through an explosion test in which the valve plate assembly, flame arrester, and other parts were safe from fracturing.

CFD Analysis and Explosion Test of a Crankcase Relief Valve Flame Arrester for LNG-fuelled Ships (LNG 연료 추진 선박용 크랭크실 릴리프 밸브 화염방지기의 유동해석 및 폭발시험)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Kim, Dong Keon;Ahn, Byoung Hoon;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Growing concerns about air pollution have led to increased demand for liquefied natural gas (LNG)-fuelled ships that have crankcases equipped with explosion relief valves to relieve excessive crankcase pressures and stop the flames emitted from the crankcase. The results of a computational fluid dynamics (CFD)-based feasibility analysis of the crankcase relief valve flame arrester design conducted using ANSYS CFX V14 showed that the inlet and outlet relief valve temperatures differed by $350-700^{\circ}C$. An explosion test was performed based on European standard EN14797 to evaluate the flame transmission and mechanical integrity of the valve. No flame transmission from the pressure vessel to the exterior was detected, and the mechanical integrity of the valve was confirmed. Thus, the relief valve components were found to be safe from the viewpoint of fracture.

A Numerical Study on the Flow Characteristics through an Industrial Safety Relief Valve (산업용 안전 릴리프밸브 유동특성에 관한 수치연구)

  • Kang, Sang-Mo;Lee, Bong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.696-704
    • /
    • 2009
  • In this paper, the flow characteristics through an industrial safety relief valve used to protect the crankcase room in a large-sized marine engine have been numerically investigated using the moving-mesh strategy. With the room pressure higher than the cracking one, the spring-loaded disc becomes open and then the air in the room blows off into the atmosphere, resulting in the reduction of the room pressure and then the shutoff of the disc. Numerical simulations are performed on the compressible air flow through the relief valve (${\phi}160mm$) with the initial room pressure (0.11 bar or 0.12bar) higher than the cracking one (0.1 bar). The numerical method has been validated by comparing the results with the empirical ones. Results show that the disc motion and flow characteristics can be successfully simulated using the moving-mesh strategy and depend strongly on the spring stiffness and the flow passage shape. With increasing spring stiffness, the maximum disc displacement decreases and thus the total disc-opening time also decreases. In addition, the flow passage shape makes a significant effect on the velocity and direction of the flow.