• Title/Summary/Keyword: Crank-Nicolson

Search Result 73, Processing Time 0.022 seconds

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1409-1419
    • /
    • 2017
  • We introduce an extrapolated Crank-Nicolson characteristic finite element method to approximate solutions of a convection dominated Sobolev equation. We obtain the higher order of convergence in both the spatial direction and the temporal direction in $L^2$ normed space for the extrapolated Crank-Nicolson characteristic finite element method.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.295-308
    • /
    • 2017
  • We introduce a Crank-Nicolson characteristic finite element method to construct approximate solutions of a nonlinear Sobolev equation with a convection term. And for the Crank-Nicolson characteristic finite element method, we obtain the higher order of convergence in the temporal direction and in the spatial direction in $L^2$ normed space.

A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.729-744
    • /
    • 2016
  • A Crank-Nicolson characteristic finite element method is introduced to construct approximate solutions of a Sobolev equation with a convection term. The higher order of convergences in the temporal direction and in the spatial direction in $L^2$ normed space are verified for the Crank-Nicolson characteristic finite element method.

ESTRPOLATED CRANK-NICOLSON APPROXIMATION FOR A LINEAR STEFAN PROBLEM WITH A FORCING TERM

  • Ahn, Min-Jung;Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.795-809
    • /
    • 2001
  • In this paper, we apply finite element Galerkin method to a single-ohase linear Stefan problem with a forcing term. We apply the extrapolated Crank-Nicolson method to construct the fully discrete approximation and we derive optimal error estimates in the temporal direction in $L^2$, $H^1$ spaces.

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.257-270
    • /
    • 2018
  • An extrapolated Crank-Nicolson characteristic finite element method is introduced for approximate solutions of nonlinear Sobolev equations with a convection term. And we obtain the higher order of convergence for approximate solutions in the temporal and the spatial directions with respect to $L^2$ norm.

A PRIORI $L^2$-ERROR ESTIMATES OF THE CRANK-NICOLSON DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR PARABOLIC EQUATIONS

  • Ahn, Min-Jung;Lee, Min-A
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.615-626
    • /
    • 2010
  • In this paper, we analyze discontinuous Galerkin methods with penalty terms, namly symmetric interior penalty Galerkin methods, to solve nonlinear parabolic equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ${\ell}^{\infty}$ ($L^2$) error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

2D Crank-Nicolson FDTD Method Based on Isotropic-Dispersion Finite Difference Equation for Lossy Media (손실 매질에 대한 Isotropic-Dispersion 유한 차분식의 2D Crank-Nicolson FDTD 기법)

  • Kim, Hyun;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.805-814
    • /
    • 2010
  • The Crank-Nicolson isotropic-dispersion finite difference time domain(CN ID-FDTD) scheme is proposed based on isotropic-dispersion finite difference(ID-FD) $equation^{[1],[2]}$. The dispersion relation of CN ID-FDTD is derived for lossy media by solving the eigenvalue problem of iteration matrix in spatial spectral domain, in addition, the weighting factors and scaling factors of the CN ID-FDTD scheme are presented for low dispersion error. The CN ID-FDTD scheme makes the dispersion error drastically reduced and shows accurate numerical results compared to the conventional Crank-Nicolson FDTD method.

Convergence Characteristics of the Crank-Nicolson-Galerkin Scheme for Linear Parabolic Systems

  • Cho, Jin-Rae;Ha, Dae-Yul;Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1264-1275
    • /
    • 2002
  • This paper is concerned with the investigation on the stability and convergence characteristics of the Crank-Nicolson-Galerkin scheme that is widely being employed for the numerical approximation of parabolic-type partial differential equations. Here, we present the theoretical analysis on its consistency and convergence, and we carry out the numerical experiments to examine the effect of the time-step size △t on the h- and P-convergence rates for various mesh sizes h and approximation orders P. We observed that the optimal convergence rates are achieved only when △t, h and P are chosen such that the total error is not affected by the oscillation behavior. In such case, △t is in linear relation with DOF, and furthermore its size depends on the singularity intensity of problems.

FITTED OPERATOR ON THE CRANK-NICOLSON SCHEME FOR SOLVING A SMALL TIME DELAYED CONVECTION-DIFFUSION EQUATIONS

  • TEFERA, DAGNACHEW MENGSTIE;TIRUNEH, AWOKE ANDARGIE;DERESE, GETACHEW ADAMU
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.491-505
    • /
    • 2022
  • This paper is concerned with singularly perturbed convection-diffusion parabolic partial differential equations which have time-delayed. We used the Crank-Nicolson(CN) scheme to build a fitted operator to solve the problem. The underling method's stability is investigated, and it is found to be unconditionally stable. We have shown graphically the unstableness of CN-scheme without fitting factor. The order of convergence of the present method is shown to be second order both in space and time in relation to the perturbation parameter. The efficiency of the scheme is demonstrated using model examples and the proposed technique is more accurate than the standard CN-method and some methods available in the literature, according to the findings.

ITERATIVE ALGORITHMS AND DOMAIN DECOMPOSITION METHODS IN PARTIAL DIFFERENTIAL EQUATIONS

  • Lee, Jun Yull
    • Korean Journal of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 2005
  • We consider the iterative schemes for the large sparse linear system to solve partial differential equations. Using spectral radius of iteration matrices, the optimal relaxation parameters and good parameters can be obtained. With those parameters we compare the effectiveness of the SOR and SSOR algorithms. Applying Crank-Nicolson approximation, we observe the error distribution according to domain decomposition. The number of processors due to domain decomposition affects time and error. Numerical experiments show that effectiveness of SOR and SSOR can be reversed as time size varies, which is not the usual case. Finally, these phenomena suggest conjectures about equilibrium time grid for SOR and SSOR.

  • PDF