• Title/Summary/Keyword: Crank Angle-based Control

Search Result 7, Processing Time 0.017 seconds

A Study on the Event Processing for Electronic Control (전자제어의 Event 처리방법에 관한 연구)

  • 이종승;이중순;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.115-122
    • /
    • 1998
  • For digital engine control timings, such as ignition, are based on the crank shaft angle. Therefore, it is very important that the angle of the crank shaft can be detected with accuracy for optimal ignition timing. Sequential multi-point injection(MPI) systems that have independent injection events for each cylinder, are used to inject an accurate quantity of fuel, and to cope with varying engine status promptly. In this study the distributorless ignition timing. A crankshaft position sensor has been installed such that it generates a number of pulses per crankshaft revolution to permit accurate detection of the crank shaft angle. An event detecting algorithm has been developed, which detects the crank shaft pulses generated by the position sensor, and the software outputs the required control signals at given crank angle values. We clarified that the hardware method is the best way to increase the performance of the control system, because the event detecting duration T(1+2)max becomes zero.

  • PDF

A Study on Design and Development of an Engine Control System Based on Crank Angle (크랭크 각 기준의 엔진 제어시스템 설계.제작에 관한 연구)

  • 윤팔주;김명준;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.198-210
    • /
    • 1998
  • A crank angle-based engine control system has been developed for use as an engine research tool to provide precise control of the fuel injection(timing and duration) and ignition(timing and dwell) in real-time. The engine event information is provided by the engine shaft encoder, and the engine control system uses this information to generate spark and injector control signals for relevant cylinders. Eight different engine types and four different rotary encoder resolutions can be accommodated by this system. Also this system allows a user to individually control the ignition and fuel injection for each cylinder in a simple manner such as through a keyboard or in a real-time operation from a closed-loop control program.

  • PDF

A Study on the Adaptive Control of Spark Timing Using Cylinder Pressure in SI Engine (전기점화기관에서 실린더압력을 이용한 점화시기 적응제어에 관한 연구)

  • 조한승;이종화;유재석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.122-129
    • /
    • 1996
  • The spark timing is one of major parameters to the engine performance and emissions. The ECU controls the spark timing based on preset values, which are functions of load and speed, in most of today's automotive SI engine. In this system, the preset spark timing can be different from optimum value due to the deviations from mass production, aging effects and so on. In the present study, a control logic is investigated for real time adaptation of spark timing to optimal value. It has been found that crank angle of miximum cylinder pressure is one of the appropriate parameters to estimate the optimum spark timing throught experiment. It has also been observed for spark timing convergence by variation of engineering model factors. The simulation program including engineering model for cycle by cycle variation of combustion is developed for surveying spark timing control logic. It is also shown that simulation results reflect experiment outputs and reasonableness of spark timing control logic for crank angle of maximum cylinder pressure.

  • PDF

A Study on the Development of an Electronic Control System for Optimal Start and Idle Speed Control in Gasoline Engines (기솔린 기관에서 최적의 시동 및 공회전 속도제어를 위한 전자 제어장치 개발에 관한 연구)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1148-1160
    • /
    • 2001
  • An electronic control system of the automobile engine for optimal start and idle speed control has been developed. This system employs the microcoputer-based electronic control unit and crank angle sensor for precise control on fuel injection, ignition timing, and idle speed more quickly and accurately at the start and idling. Consequently, the number of misfire can be reduced during been affected by air flow rate, idle quality(roughness), spark timing, fuel injection, water temperature, and load, Thus, this electronic control system strivers to reach the optimal idle operating point, defined the lowest idle speed(fuel economy) and idle quality(roughness), under any engine operating conditions.

  • PDF

A Study on the Implovement of Voltage Regulator and Electronic Control Unit for Vehicle (차량용 전자제어장치와 전압조정기 개선에 관한 연구)

  • Kim, Sun-Ho;Kim, Hyo-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.912-917
    • /
    • 2001
  • In this study, we define the measuring method of crank angle precisely using an event and perform a study on the hardware structure and software algorithms which is applicable for the commercial engine. Also we developed a Computer-ECU(Personal computer based electronic control unit) using a computer and a microprocessor, for performing the ignition at a desire position(angle) and for controlling a duty ratio a pulse for ISC(Idle speed control). We applied these algorithms to the modeling which is induced a concept of event and got a better result than a conventional ECU in the state of transient as a result of performing air fuel ratio control in a commercial engine. This technique can be used for the back to improve ECU performance. It the present type of Hybrid I. C voltage regulator is altered to the new type of regulator, we will be surely able to reduce the production cost as well as simplify the design of alternator\`s rear bracket and rectifier part because of the removal of trio diode. Experiment is taken by MS-R004.

  • PDF

SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure (실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구)

  • Park, Seung-Beom;Yun, Pal-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.