• 제목/요약/키워드: Cracking pattern

검색결과 99건 처리시간 0.024초

Nonlinear shear strength of pre-stressed concrete beams

  • Rahai, Alireza;Shokoohfar, A.
    • Structural Engineering and Mechanics
    • /
    • 제41권4호
    • /
    • pp.441-458
    • /
    • 2012
  • The shear strength is an important factor in the design of prestressed concrete beams. Therefore, researchers have utilized various methods to determine the shear strength of these elements for the design purposes. To evaluate some of the proposed theoretical methods, numerous models of post-tensioned beams with or without vertical prestressing are selected and analyzed using the finite element method and assuming nonlinear behavior for the materials. In this regard the validity of modeling is evaluated based on some tests results. In the second part of the study two beam specimens are built and tested and their load-deformation curve and cracking pattern are studied. The analytical results consist of compressive strut slope and mid span load deflection are compared with some experimental results, and the results of some codes' formulas. Finally comparing the results of nonlinear analysis with the experimental values, a new formula is proposed for determining strut slopes in prestressed concrete beams.

고성능 감수제 종류에 따른 섬유보강 무시멘트 복합재료의 인장거동 및 균열 패턴 (Tensile Behavior and Cracking Patterns of Fiber-Reinforced Cementless Composites According to Types of Superplasticizers)

  • 박세언;최정일;김윤용;이방연
    • 한국건설순환자원학회논문집
    • /
    • 제9권2호
    • /
    • pp.200-207
    • /
    • 2021
  • 이 연구의 목적은 고성능 감수제의 종류가 알칼리활성 슬래그 기반 무시멘트 복합재료의 인장거동과 균열패턴에 미치는 영향을 실험적으로 조사하는 것이다. 이를 위하여 고성능 감수제 종류에 따라 3종류의 배합을 준비하였고, 압축강도 및 인장실험을 수행하였다. 실험결과 혼합 후 굳기 전에 섬유뭉침이나 섬유의 쏠림이 없었지만 고성능 감수제의 종류에 따라 복합재료의 인장강도, 인장변형성능, 그리고 인성은 최대 28.1%, 39.1%, 66.2% 차이가 나는 것으로 나타났다. 또한 고성능 감수제는 균열개수와 최대 섬유 가교 응력에 영향을 주는 것으로 나타났다.

원자력 압력용기의 피복하부 결함검출에 대한 고찰(II) (A Study of the Detection for Underclad Cracks of Nuclear Pressure Vessel)

  • 박치승;강기원
    • 비파괴검사학회지
    • /
    • 제13권2호
    • /
    • pp.31-39
    • /
    • 1993
  • 국내 원자력 압력 용기의 피복하부 결함에 대한 검사는 1970년대 초부터 이 피복하부 결함에 대한 보고가 되기 시작하였으나 적용 규격인 ASME Code의 요구사항이 아니므로 현재까지는 검사를 수행해 오지 않고 있다. 본 실험의 목적은 이러한 피복하부 결함을 검출하는데 적절한 초음파검사 방법의 조건을 찾는 것이다. 실험은 $70^{\circ}$굴절종파, 50/70 multibeam탐촉자, SLIC-50 탐촉자 등을 사용하여 원자력 압력용기의 피복 용접과 같은 조건하에서 피복용접 시킨 초음파보정 시험편과 demonstration시험편에 대하여 수행하였다. 실험 결과 피복하부 결함의 검출은 50/70 multibeam탐촉자가 효과적이었으면, 피복하부 결함의 길이 평가는 $70^{\circ}$굴절종파로 수행하는 것이 바람직한 것으로 나타났으며, 반면에 피복하부 결함의 깊이 측정은 SLIC-50 탐촉자를 사용하여 M-SPOT 방범과 M-PET 방법으로 평가하는 것이 가장 효과적인 것으로 사료된다.

  • PDF

$H_2S$ 가스포화 염산수용액에 의한 용접구조용강의 응력부식균열 발생거동 (Stress Corrosion Cracking Initiation Behavior of Weldable Structural Steel in $H_2S$ Gas Saturated HCl Solution)

  • 오세욱;김재철;김광영
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.88-100
    • /
    • 1990
  • Among the test methods to evaluate stress-corrosion cracking(SCC) on the basis of fracture mechanics, constant displacement(bolt) loading method using modified-WOL specimen is practically convenient. In this test method, compliance formula is generally required to calculate load(consequently $K_{ISCC}$). There are many problems in using the analytic compliance formula to calculate $K_{ISCC}$, so we had proposed the experimental $K_{ISCC}$ evaluation technique in the previous report. This study has employed the slightly altered configuration of modified-WOL specimen made of weldable structural stee(BS360-50D). With these specimens, stress-corrosion tests have been performed in $H_2S$ gas saturated 20% HCl solution. Through the test, the problems as mentioned earlier have been discussed again, and the proposed evaluation technique has been verified. And the stress-corrosion cracks and hydrogen blisters have been investigated in the initiation step with the aids of metallurgical micrographs, SEM fractographs, and EPMA analysis. The inclusions segregated in the mid-thickness region traps hydrogen to produce the hydrogen blistering. The applied or residual stress does not contribute the occurrence of the blister. Hydrogen absorbed into the mid-thickness region is consumed to produce the blistering so that stress-corrosion crack could hardly be detected at that region. The stress-corrosion cracks initiate from the inclusions and propagate in radial pattern. And the initiation site is remote from the crack tip and is inclined from the crack plane, which is assumed to be caused by the triaxial stress and the amount of the absorbed hydrogen.

  • PDF

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • 제30권3호
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

PL법 환경하에서 열 충격에 따른 전력케이블의 재료분석 및 사고위험성 (The Accident Hazard and Material Analysis of Power Cable due to Thermal Stress under PL System)

  • 김영석;송길목;정진수;정종욱;김선구;김상현
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.82-87
    • /
    • 2008
  • It is impossible to database(DB) the patterns of power cable events and cause analysis of faulted cable because the product liability(PL) law have been enforced in Korea, since 2002. In additions, simulation and pattern of power cable events are needed for DB system under accelerated deterioration. In this paper, we tested for resistance to cracking of cable below the 22.9kV class due to thermal stresses. This method of exam is following IEC 60811-3-1(Common test methods for insulating and sheathing materials of electric cables). From the results, The 22.9kV calss A power cable was discolored on the surface and significantly reduced in the longitudinal direction. As the thermal weight properties of A power cable was definitely varied, we are able to guess the problem of manufacture. If the cable was defect by the manufacture, the victims would be able to claim for damage in the PL system.

인공신경망을 이용한 목재건조 중 발생하는 음향방출 신호 패턴분류 (Pattern Classification of Acoustic Emission Signals During Wood Drying by Artificial Neural Network)

  • 김기복;강호양;윤동진;최만용
    • Journal of Biosystems Engineering
    • /
    • 제29권3호
    • /
    • pp.261-266
    • /
    • 2004
  • This study was Performed to classify the acoustic emission(AE) signal due to surface cracking and moisture movement in the flat-sawn boards of oak(Quercus Variablilis) during drying using the principal component analysis(PCA) and artificial neural network(ANN). To reduce the multicollinearity among AE parameters such as peak amplitude, ring-down count event duration, ring-down count divided by event duration, energy, rise time, and peak amplitude divided by rise time and to extract the significant AE parameters, correlation analysis was performed. Over 96 of the variance of AE parameters could be accounted for by the first and second principal components. An ANN analysis was successfully used to classify the Af signals into two patterns. The ANN classifier based on PCA appeared to be a promising tool to classify the AE signals from wood drying.

철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究) (A Study on the Bond Behavior of Reinforced Concrete Beam)

  • 이봉학;홍창우;이주형;김동호
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF