• Title/Summary/Keyword: Crack-Growth Fracture

검색결과 611건 처리시간 0.024초

컴팩트 인장 시편을 이용한 연성 재료의 불안정 균열 성장에 관한 연구 (Crack Growth Instability for Ductile Material Using the Compact Tension Specimen)

  • 이홍서;김희송
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.928-937
    • /
    • 1989
  • 본 연구에서는 Shih등이 제안한 찢어짐 계수인 T$_{\delta}$의 불안정 파괴 매개 변수로서의 적용 가능성을 컴팩트 인장 시편(compact tension specimen dlgk CTS로 칭함)을 사용하여 검토한다. 이를 위하여 시험기에 스프링을 부착하여 시편에 불안정 파괴 실험을 수행한다. 재료의 불안정성을 판정하는 찢어짐 계수를 구하기 위해서는 CTOD-정항 곡선을 결정해야 한다. CTOD는 하중선 변위를 측정하여 CTOD- 하중선 변위 관계식으로 평가한다.한다.

피로균열전파 동안 하중감소에 의한 균열지연 (Crack Retardation byt Load Reduction During Fatigue Crack Propagation)

  • 김현수;남기우;안석환;도재윤
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2004-2010
    • /
    • 2003
  • Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference. between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction.

Analytical crack growth in unidirectional composite flywheel

  • Lluis Ripoll;Jose L. Perez-Aparicio;Pere Maimi;Emilio V. Gonzalez
    • Coupled systems mechanics
    • /
    • 제12권2호
    • /
    • pp.183-197
    • /
    • 2023
  • Scarce research has been published on crack propagation fracture of flywheels manufactured with carbon fiber-reinforced polymers. The present work deals with a calculation method to determine the conditions for which a crack propagates in the axial direction of the flywheel. The assumptions are: flywheels made with just a single thick ply or ply clustering laminates, oriented following the hoop direction; a single crack is analyzed in the plane defined by the hoop and axial directions; the crack starts close to one of the free edges; its axial length is initially large enough so that its tip is far away from that free edge, and the crack expands the entire circumferential perimeter and keeps its concentric position. The developed method provides information for a good design of flywheels. It is concluded that a fracture-based crack propagation criterion generally occurs at a lower speed than a stress-based criterion. Also, that the evolution of failure with thickness using the fracture criterion is exponential, demonstrating that thin flywheels are relatively not sensitive to crack propagation, whereas thick ones are very prone.

회전속도 증가에 의한 광디스크의 파괴현상에 관한 연구 (A Study on the Fracture Phenomena in Optical Disks Due to Increase of the Rotating Speed)

  • 조은형;좌성훈;정진태
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.437-442
    • /
    • 2001
  • In this study, the fracture phenomena of optical disks are discussed by theoretical and experimental approaches and then some recommendations are presented to prevent the fracture. Linear equations of motion are discretized by using the Galerkin approximation. From the discretized equations, the dynamic responses are computed by the generalized- time integration method. As a fracture criterion for optical disks, the critical crack length is presented. From experimental methods, the fracture procedure is analyzed. The fracture occurs when disks have crack on the inner radius of the disks. Since the crack growth and the fracture result from the stress concentration on the tip of the crack, a measure should be taken to overcome the stress concentration. This problem can be resolved by the structural modification of a disk. This study proposes 3 types of improved optical disks.

  • PDF

마찰교반용접된 7075-T651 알루미늄 판재의 피로균열전파의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates)

  • 공유식;김선진
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, in order to investigate the effects of marco and microscopic observations of fatigue crack growth in friction stir welded (FSWed) 7075-T651 aluminum alloy plates, fatigue crack growth tests were performed under constant amplitude loading condition at room temperature with three different pre-cack locations, namely base metal (BM-CL) and two kinds of pre-crack locations in welded joints, weld metal (WM-CL) and heat affected zone (HAZ-CL) specimens. The fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy plates were discussed based on the marco and microscopic fractographic observations. The marcoscopic aspects of surface crack growth path for BM-CL and HAZ-CL specimens indicate relatively straight lines, however, the crack growth paths of WM-CL specimens grow first straight and by followed toward the TMAZ and HAZ. The microscopic aspects of fatigue fracture for BM-CL and HAZ-CL specimens indicate typical fatigue striation, but WM-CL showed intergranular fracture pattern by micro structural changes of FSW process.

자동차구조용 $SiC_p/Al-Si$복합재의 피로균열 진전특성에 대한 연구 (Fatigue Crack Growth Characteristics of $SiC_p/Al-Si$ Alloy Composites for Automotive Structures)

  • 고승기;이해무
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.174-181
    • /
    • 2005
  • In order to investigate the behavior of fatigue crack growth of SiC-particulate- reinforced Al-Si alloy composites, fatigue tests using single edge notched tension(SENT) specimens were performed. Composite materials were manufactured by using both permanent die casting and extrusion processes with different volume fractions of $10\%\;and\;20\%$. $SiC_p-reinfurced$ Al-Si composites showed the increased levels of threshold stress intensity factor range, ${\Delta}K_{th}$, for the increased volume fractions of SiC particles, which implies the increased fatigue crack growth resistance at the threshold or low ${\Delta}K$ levels, compared to the unreinforced Al-Si alloy. In the Paris region, however, the composites showed the increased rate of crack growth resulting in the unfavorable effects on the fatigue crack growth resistance. Critical stress intensity factor range at unstable crack growth leading to final fracture decreased as the volume fraction of SiC particle increased, because of the reduced fracture toughness of the composites. Extruded materials showed higher threshold and critical values than the cast materials.

신경회로망을 이용한 AI 2024-T3합금의 피로손상예측에 관한 연구 (A Study on the Prediction of Fatigue Damage in 2024-T3 Aluminium Alloy Using Neural Networks)

  • 조석수;장득열;주원식
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.168-177
    • /
    • 1999
  • Fatigue damage is the phenomena which is accumulated gradually with loading cycle in material. It is represented by fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$. Fracture mechanical parameters estimating large crack growth behavior can calculate quantitative amount of fatigue crack growth resistance in engineering material. But fatigue damage has influence on various load, material and environment. Therefore, In this study, we propose that artificial intelligent fatigue damage model can predicts fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$ simultaneously using fracture mechanical and nondestructive parameters.

  • PDF

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • 제3권3호
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.

성장균열 형상에 대한 기초적 프랙탈 특성연구 (A Fundamental Study of Fractal Characteristics for a Crack Growth Profile)

  • 권오헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.522-528
    • /
    • 1998
  • This paper presents a fundamental fractal characteristics of the growing crack that has an irregularity producing a zigzag crack contour. This irregularity is analysed by a fractal geometry in a box counting method that is a very simple technique. First the fractal dimensions and actual fractal extensive crack length are obtained. Also a fractal fracture energy relation with a fractal dimension is found so as to get fractal crack behaviors. Thus it can be shown that the fractal dimension has a possibility as a fracture parameter in a real crack growth length meaning.

  • PDF

몬테카를로 모사에 의한 용접 계면에서의 크리프 균열성장 파손 확률 평가 (Evaluation of Creep Crack Growth Failure Probability at Weld Interface Using Monte Carlo Simulation)

  • 이진상;윤기봉
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.61-66
    • /
    • 2005
  • A probabilistic approach for evaluating failure risk is suggested in this paper. Probabilistic fracture analyses were performed for a pressurized pipe of a Cr-Mo steel reflecting variation of material properties at high temperature. A crack was assumed to be located along the weld fusion line. Probability density functions of major variables were determined by statistical analyses of material creep and creep crack growth data measured by the previous experimental studies by authors. Distributions of these variables were implemented in Monte Carlo simulation of this study. As a fracture parameter for characterizing growth of a fusion line crack between two materials with different creep properties, $C_t$ normalized with $C^*$ was employed. And the elapsed time was also normalized with tT, Resultingly, failure probability as a function of operating time was evaluated fur various cases. Conventional deterministic life assessment result was turned out to be conservative compared with that of probabilistic result. Sensitivity analysis for each input variable was conducted to understand the most influencing variable to the analysis results. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.